MULTICHANNEL FEEDBACK CONTROL FOR THE ISOLATION OF BASE-EXCITED VIBRATION

MULTICHANNEL FEEDBACK CONTROL FOR THE ISOLATION OF BASE-EXCITED VIBRATION This paper describes the implementation of an independent two-channel controller based on absolute velocity feedback and its performance in improving the isolation from base vibration of a mounted rigid equipment structure characterized by two-degrees of freedom. A single-channel controller is also investigated. If the base structure were rigid, a collocated control strategy based on feedback of the equipment absolute velocity reduces the vibration transmission by skyhook damping. In this study, the vibrating base is flexible so that no rigid ground is available to react the secondary forces off. The direct velocity feedback (DVFB) control implemented here is shown to be very stable, however, so that high control gains could be applied. Effective damping ratios of up to 600% in the modes of the suspended system could be introduced by the two control channels. The passive isolation performance is thus dramatically improved by the two-channel controller: the heave mode is reduced by up to 40 dB, whereas the amplitude of the pitching mode is attenuated up to 26 dB. The experimental results also show a global improvement in the vibration caused by the resonances of the base plate over the frequency range of control (0–200 Hz). The control effect decreases with frequency as a consequence of the increasing efficiency of the passive isolation. It is also shown that if the feedback gains are equal for the two control channels, the control effect is the same as adding equal damping terms to the two modal responses of the mounted equipment. Finally, the control is shown to be robust to changes in the plate support dynamics, since adding masses at various positions on the base plate did not destabilize the system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Sound and Vibration Elsevier

MULTICHANNEL FEEDBACK CONTROL FOR THE ISOLATION OF BASE-EXCITED VIBRATION

Journal of Sound and Vibration, Volume 234 (4) – Jul 20, 2000

Loading next page...
1
 
/lp/elsevier/multichannel-feedback-control-for-the-isolation-of-base-excited-9U9Iw59LD2
Publisher
Elsevier
Copyright
Copyright © 2000 Academic Press
ISSN
0022-460X
eISSN
1095-8568
DOI
10.1006/jsvi.2000.2891
Publisher site
See Article on Publisher Site

Abstract

This paper describes the implementation of an independent two-channel controller based on absolute velocity feedback and its performance in improving the isolation from base vibration of a mounted rigid equipment structure characterized by two-degrees of freedom. A single-channel controller is also investigated. If the base structure were rigid, a collocated control strategy based on feedback of the equipment absolute velocity reduces the vibration transmission by skyhook damping. In this study, the vibrating base is flexible so that no rigid ground is available to react the secondary forces off. The direct velocity feedback (DVFB) control implemented here is shown to be very stable, however, so that high control gains could be applied. Effective damping ratios of up to 600% in the modes of the suspended system could be introduced by the two control channels. The passive isolation performance is thus dramatically improved by the two-channel controller: the heave mode is reduced by up to 40 dB, whereas the amplitude of the pitching mode is attenuated up to 26 dB. The experimental results also show a global improvement in the vibration caused by the resonances of the base plate over the frequency range of control (0–200 Hz). The control effect decreases with frequency as a consequence of the increasing efficiency of the passive isolation. It is also shown that if the feedback gains are equal for the two control channels, the control effect is the same as adding equal damping terms to the two modal responses of the mounted equipment. Finally, the control is shown to be robust to changes in the plate support dynamics, since adding masses at various positions on the base plate did not destabilize the system.

Journal

Journal of Sound and VibrationElsevier

Published: Jul 20, 2000

References

  • A practical product implementation of an active/passive vibration isolation system
    BEARD, A.M.; VON FLOTOW, A.H.; SCHUBERT, D.W.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off