Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy

Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat... With the arrival of big data, data mining analysis and high-performance forecasting of wind speed is increasingly attracting close attention. Despite the fact that massive investigations concerning wind speed forecasting in theory and practice have been conducted by multiple researchers, studies concerning multi-step-ahead forecasting are still lacking, impeding the further development in the field. In this study, a novel hybrid approach is proposed for multi-step-ahead wind speed forecasting utilizing optimal feature selection and an artificial neural network optimized by a modified bat algorithm with cognition strategy. The proposed hybrid model can largely remedy the deficiencies of neural networks for multi-step-ahead forecasting, which is validated for different forecasting horizons, and is shown to work effectively. Finally, experiments based on three verification units from the city of Penglai in China are conducted effectively, illustrating that the proposed model not only has advantages when compared with benchmark models, but also has great potential for application to wind power system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy

Loading next page...
 
/lp/elsevier/multi-step-ahead-wind-speed-forecasting-based-on-optimal-feature-p7AfArcg9v
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.10.075
Publisher site
See Article on Publisher Site

Abstract

With the arrival of big data, data mining analysis and high-performance forecasting of wind speed is increasingly attracting close attention. Despite the fact that massive investigations concerning wind speed forecasting in theory and practice have been conducted by multiple researchers, studies concerning multi-step-ahead forecasting are still lacking, impeding the further development in the field. In this study, a novel hybrid approach is proposed for multi-step-ahead wind speed forecasting utilizing optimal feature selection and an artificial neural network optimized by a modified bat algorithm with cognition strategy. The proposed hybrid model can largely remedy the deficiencies of neural networks for multi-step-ahead forecasting, which is validated for different forecasting horizons, and is shown to work effectively. Finally, experiments based on three verification units from the city of Penglai in China are conducted effectively, illustrating that the proposed model not only has advantages when compared with benchmark models, but also has great potential for application to wind power system.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off