Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy

Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat... With the arrival of big data, data mining analysis and high-performance forecasting of wind speed is increasingly attracting close attention. Despite the fact that massive investigations concerning wind speed forecasting in theory and practice have been conducted by multiple researchers, studies concerning multi-step-ahead forecasting are still lacking, impeding the further development in the field. In this study, a novel hybrid approach is proposed for multi-step-ahead wind speed forecasting utilizing optimal feature selection and an artificial neural network optimized by a modified bat algorithm with cognition strategy. The proposed hybrid model can largely remedy the deficiencies of neural networks for multi-step-ahead forecasting, which is validated for different forecasting horizons, and is shown to work effectively. Finally, experiments based on three verification units from the city of Penglai in China are conducted effectively, illustrating that the proposed model not only has advantages when compared with benchmark models, but also has great potential for application to wind power system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy

Loading next page...
 
/lp/elsevier/multi-step-ahead-wind-speed-forecasting-based-on-optimal-feature-p7AfArcg9v
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.10.075
Publisher site
See Article on Publisher Site

Abstract

With the arrival of big data, data mining analysis and high-performance forecasting of wind speed is increasingly attracting close attention. Despite the fact that massive investigations concerning wind speed forecasting in theory and practice have been conducted by multiple researchers, studies concerning multi-step-ahead forecasting are still lacking, impeding the further development in the field. In this study, a novel hybrid approach is proposed for multi-step-ahead wind speed forecasting utilizing optimal feature selection and an artificial neural network optimized by a modified bat algorithm with cognition strategy. The proposed hybrid model can largely remedy the deficiencies of neural networks for multi-step-ahead forecasting, which is validated for different forecasting horizons, and is shown to work effectively. Finally, experiments based on three verification units from the city of Penglai in China are conducted effectively, illustrating that the proposed model not only has advantages when compared with benchmark models, but also has great potential for application to wind power system.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial