Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems

Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder... Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at different spatial and temporal scales in smallholder coffee-dairy farms in Murang'a County, Central Kenya. GHG measurements were carried out for one year, comprising two cropping seasons, using vented static chambers and gas chromatography. Sixty rectangular frames were installed on two farms comprising the three main cropping systems found in the area: 1) coffee (Coffea arabica L.); 2) Napier grass (Pennisetum purpureum); and 3) maize intercropped with beans (Zea mays and Phaseolus vulgaris). Within these fields, chambers were allocated on fertilised and unfertilised locations to capture spatial variability. Cumulative annual fluxes in coffee plots ranged from 1 to 1.9kgN2O-Nha−1, 6.5 to 7.6MgCO2-Cha−1 and −3.4 to −2.2kgCH4-Cha−1, with 66% to 94% of annual GHG fluxes occurring during rainy seasons. Across the farm plots, coffee received most of the N inputs and had 56% to 89% higher emissions of N2O than Napier grass, maize and beans. Within farm plots, two to six times higher emissions were found in fertilised hotspots – around the perimeter of coffee trees or within planted maize rows – than in unfertilised locations between trees, rows and planting holes. Background and induced soil N2O emissions from fertiliser and manure applications in the three cropping systems were lower than hypothesized from previous studies and empirical models. This study supplements methods and underlying data for the quantification of GHG emissions at multiple spatial and temporal scales in tropical, smallholder farming systems. Advances towards overcoming the dearth of data will facilitate the understanding of synergies and tradeoffs of climate-smart approaches for low emissions development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems

Loading next page...
 
/lp/elsevier/multi-scale-measurements-show-limited-soil-greenhouse-gas-emissions-in-ON9VNE8LoP
Publisher
Elsevier
Copyright
Copyright © 2018 The Authors
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.247
Publisher site
See Article on Publisher Site

Abstract

Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at different spatial and temporal scales in smallholder coffee-dairy farms in Murang'a County, Central Kenya. GHG measurements were carried out for one year, comprising two cropping seasons, using vented static chambers and gas chromatography. Sixty rectangular frames were installed on two farms comprising the three main cropping systems found in the area: 1) coffee (Coffea arabica L.); 2) Napier grass (Pennisetum purpureum); and 3) maize intercropped with beans (Zea mays and Phaseolus vulgaris). Within these fields, chambers were allocated on fertilised and unfertilised locations to capture spatial variability. Cumulative annual fluxes in coffee plots ranged from 1 to 1.9kgN2O-Nha−1, 6.5 to 7.6MgCO2-Cha−1 and −3.4 to −2.2kgCH4-Cha−1, with 66% to 94% of annual GHG fluxes occurring during rainy seasons. Across the farm plots, coffee received most of the N inputs and had 56% to 89% higher emissions of N2O than Napier grass, maize and beans. Within farm plots, two to six times higher emissions were found in fertilised hotspots – around the perimeter of coffee trees or within planted maize rows – than in unfertilised locations between trees, rows and planting holes. Background and induced soil N2O emissions from fertiliser and manure applications in the three cropping systems were lower than hypothesized from previous studies and empirical models. This study supplements methods and underlying data for the quantification of GHG emissions at multiple spatial and temporal scales in tropical, smallholder farming systems. Advances towards overcoming the dearth of data will facilitate the understanding of synergies and tradeoffs of climate-smart approaches for low emissions development.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off