Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading

Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial... There is an increasing interest in designing lightweight automobile parts to enhance the passive safety of automobiles and reduce the fuel cost consumption. Variable kinds of novel smart structures/materials have been studied to apply in the field of the crashworthiness of the automobile. In this paper, a novel crash box based on the cylindrical cellular structure with negative Poisson's ratio (NPR) is proposed. The unit cell for the NPR structure is the double-V configuration. The structure can contract in the radial direction when compressed to enhance the stiffness. Then the parametric finite element (FE) model is constructed with MATLAB scripts to study the influence of the geometrical parameters on the crashworthiness. During the analysis, the Rescaled Range Analysis (RRA) is utilized. Then the specific energy absorption (SEA) and peak crushing force (PCF) are chosen as the optimization objective, and the Pareto fronts are attained by employing the multi-objective particle swarm optimization (MOPSO) algorithm. Also, the optimal results are compared with the initial model to verify the effectiveness of the approach. It is found that the SEA increases from 4.33KJ/Kg to 6.06KJ/kg by 39.3% and PCF decreases to 78.89KN by 10.3% when the geometry parameters are optimized. Compared with the thin-walled circle structure, the cylindrical NPR structure has lower peak crushing force and higher energy absorption. Also, the crushing force is more stable under the impact loading. Therefore, the cylindrical NPR structure has a great prospect in the application of the energy absorber of the automobile. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading

Loading next page...
 
/lp/elsevier/multi-objective-crashworthiness-optimization-for-an-auxetic-vNuQ2E1prc
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2018.01.063
Publisher site
See Article on Publisher Site

Abstract

There is an increasing interest in designing lightweight automobile parts to enhance the passive safety of automobiles and reduce the fuel cost consumption. Variable kinds of novel smart structures/materials have been studied to apply in the field of the crashworthiness of the automobile. In this paper, a novel crash box based on the cylindrical cellular structure with negative Poisson's ratio (NPR) is proposed. The unit cell for the NPR structure is the double-V configuration. The structure can contract in the radial direction when compressed to enhance the stiffness. Then the parametric finite element (FE) model is constructed with MATLAB scripts to study the influence of the geometrical parameters on the crashworthiness. During the analysis, the Rescaled Range Analysis (RRA) is utilized. Then the specific energy absorption (SEA) and peak crushing force (PCF) are chosen as the optimization objective, and the Pareto fronts are attained by employing the multi-objective particle swarm optimization (MOPSO) algorithm. Also, the optimal results are compared with the initial model to verify the effectiveness of the approach. It is found that the SEA increases from 4.33KJ/Kg to 6.06KJ/kg by 39.3% and PCF decreases to 78.89KN by 10.3% when the geometry parameters are optimized. Compared with the thin-walled circle structure, the cylindrical NPR structure has lower peak crushing force and higher energy absorption. Also, the crushing force is more stable under the impact loading. Therefore, the cylindrical NPR structure has a great prospect in the application of the energy absorber of the automobile.

Journal

Materials & designElsevier

Published: Apr 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off