Multi-model approach for assessing the sunflower food value chain in Tanzania

Multi-model approach for assessing the sunflower food value chain in Tanzania Sunflower is one of the major oilseeds produced in Tanzania, but due to insufficient domestic production more than half of the country's demand is imported. The improvement of the sunflower food value chain (FVC) understanding is important to ensure an increase in the production, availability, and quality of edible oil. In order to analyse causes and propose solutions to increase the production of sunflower oil, a conceptual framework that proposes the combined use of different models to provide insights about the sunflower FVC was developed. This research focus on the identification of agricultural models that can provide a better understanding of the sunflower FVC in Tanzania, especially within the context of food security improvement. A FVC scheme was designed considering the main steps of sunflower production. Thereafter, relevant models were selected and placed along each step of the FVC. As result, the sunflower FVC model in Tanzania is organized in five steps, namely (1) natural resources; (2) crop production; (3) oil processing; (4) trade; and (5) consumption. Step 1 uses environmental indicators to analyse soil parameters on soil-water models (SWAT, LPJmL, APSIM or CroSyst), with outputs providing data for step 2 of the FVC. In the production step, data from step 1, together with other inputs, is used to run crop models (DSSAT, HERMES, MONICA, STICS, EPIC or AquaCrop) that analyse the impact on sunflower yields. Thereafter, outputs from crop models serve as input for bio-economic farm models (FSSIM or MODAM) to estimate production costs and farm income by optimizing resource allocation planning for step 2. In addition, outputs from crop models are used as inputs for macro-economic models (GTAP, MAGNET or MagPie) by adjusting supply functions and environmental impacts within steps 3, 4, and 5. These models simulate supply and demand, including the processing of products to determine prices and trade volumes at market equilibrium. In turn, these data is used by bio-economic farm models to assess sunflower returns for different farm types and agro-environmental conditions. Due to the large variety of models, it is possible to assess significant parts of the FVC, reducing the need to make assumptions, while improving the understanding of the FVC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agricultural Systems Elsevier

Multi-model approach for assessing the sunflower food value chain in Tanzania

Loading next page...
 
/lp/elsevier/multi-model-approach-for-assessing-the-sunflower-food-value-chain-in-sbTAy3fAxA
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0308-521x
D.O.I.
10.1016/j.agsy.2017.10.014
Publisher site
See Article on Publisher Site

Abstract

Sunflower is one of the major oilseeds produced in Tanzania, but due to insufficient domestic production more than half of the country's demand is imported. The improvement of the sunflower food value chain (FVC) understanding is important to ensure an increase in the production, availability, and quality of edible oil. In order to analyse causes and propose solutions to increase the production of sunflower oil, a conceptual framework that proposes the combined use of different models to provide insights about the sunflower FVC was developed. This research focus on the identification of agricultural models that can provide a better understanding of the sunflower FVC in Tanzania, especially within the context of food security improvement. A FVC scheme was designed considering the main steps of sunflower production. Thereafter, relevant models were selected and placed along each step of the FVC. As result, the sunflower FVC model in Tanzania is organized in five steps, namely (1) natural resources; (2) crop production; (3) oil processing; (4) trade; and (5) consumption. Step 1 uses environmental indicators to analyse soil parameters on soil-water models (SWAT, LPJmL, APSIM or CroSyst), with outputs providing data for step 2 of the FVC. In the production step, data from step 1, together with other inputs, is used to run crop models (DSSAT, HERMES, MONICA, STICS, EPIC or AquaCrop) that analyse the impact on sunflower yields. Thereafter, outputs from crop models serve as input for bio-economic farm models (FSSIM or MODAM) to estimate production costs and farm income by optimizing resource allocation planning for step 2. In addition, outputs from crop models are used as inputs for macro-economic models (GTAP, MAGNET or MagPie) by adjusting supply functions and environmental impacts within steps 3, 4, and 5. These models simulate supply and demand, including the processing of products to determine prices and trade volumes at market equilibrium. In turn, these data is used by bio-economic farm models to assess sunflower returns for different farm types and agro-environmental conditions. Due to the large variety of models, it is possible to assess significant parts of the FVC, reducing the need to make assumptions, while improving the understanding of the FVC.

Journal

Agricultural SystemsElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off