Morphological changes in Alpine rivers following the end of the Little Ice Age

Morphological changes in Alpine rivers following the end of the Little Ice Age This work investigates the channel changes of Alpine rivers from the end of the Little Ice Age (1850s) to the 1950s, with the aim to determine the possible role of climatic variations occurred in this period before the onset of anthropic pressures (i.e., dams, check-dams, bank protections, and gravel mining). The research was conducted on 17 river catchments of South Tyrol (northern Italy), glaciated and unglaciated. A multitemporal GIS analysis approach was adopted to assess the morphological changes (in terms of channel width and pattern) from three different sources: (i) Austrian cadastral map (1858), (ii) maps from the Italian Institute of Military Geography (1917–1925), and (iii) two aerial photo sets taken in 1945 and 1954. The analysed river network (a total of 480km) was subdivided into 162 morphologically homogeneous reaches (76 confined, 81 partly confined, and 5 unconfined), with lengths ranging from 630 to 5500m, slope from 0.3 to 24%, and drained area from 20 to ~4000km2. The statistical relationships among morphological changes and reach- and basin-scale factors were analysed by univariate and multivariate methods, and the relationships between width changes and 36 controlling factors were explored using Principal Component Analysis.The variability in width and morphological pattern changes were very pronounced between and within single rivers, highlighting the value of such a large data set. Overall, the analysed rivers varied their morphological pattern, mostly exhibiting a shift from multithread/transitional to single-thread patterns, but unchanged planform types were also common. Variations in channel width varied substantially among the analysed rivers, which featured narrowing (slightly prevailing) and widening (the least common) as well as many cases of very limited changes. Channel width variations appear statistically, although weakly, related to some morphometric variables; and significant differences emerge comparing glaciated vs. unglaciated basins. Climate-related variations (glacier dynamics and channel disturbance frequency) are argued to be the dominant factors that affected channel variations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geomorphology Elsevier

Morphological changes in Alpine rivers following the end of the Little Ice Age

Loading next page...
 
/lp/elsevier/morphological-changes-in-alpine-rivers-following-the-end-of-the-little-JtTwxOn0y0
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0169-555X
eISSN
1872-695X
D.O.I.
10.1016/j.geomorph.2017.07.018
Publisher site
See Article on Publisher Site

Abstract

This work investigates the channel changes of Alpine rivers from the end of the Little Ice Age (1850s) to the 1950s, with the aim to determine the possible role of climatic variations occurred in this period before the onset of anthropic pressures (i.e., dams, check-dams, bank protections, and gravel mining). The research was conducted on 17 river catchments of South Tyrol (northern Italy), glaciated and unglaciated. A multitemporal GIS analysis approach was adopted to assess the morphological changes (in terms of channel width and pattern) from three different sources: (i) Austrian cadastral map (1858), (ii) maps from the Italian Institute of Military Geography (1917–1925), and (iii) two aerial photo sets taken in 1945 and 1954. The analysed river network (a total of 480km) was subdivided into 162 morphologically homogeneous reaches (76 confined, 81 partly confined, and 5 unconfined), with lengths ranging from 630 to 5500m, slope from 0.3 to 24%, and drained area from 20 to ~4000km2. The statistical relationships among morphological changes and reach- and basin-scale factors were analysed by univariate and multivariate methods, and the relationships between width changes and 36 controlling factors were explored using Principal Component Analysis.The variability in width and morphological pattern changes were very pronounced between and within single rivers, highlighting the value of such a large data set. Overall, the analysed rivers varied their morphological pattern, mostly exhibiting a shift from multithread/transitional to single-thread patterns, but unchanged planform types were also common. Variations in channel width varied substantially among the analysed rivers, which featured narrowing (slightly prevailing) and widening (the least common) as well as many cases of very limited changes. Channel width variations appear statistically, although weakly, related to some morphometric variables; and significant differences emerge comparing glaciated vs. unglaciated basins. Climate-related variations (glacier dynamics and channel disturbance frequency) are argued to be the dominant factors that affected channel variations.

Journal

GeomorphologyElsevier

Published: Oct 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off