Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER

Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress.... Work on water stress detection at tree and orchard levels using a high-spatial airborne thermal sensor is presented, showing its connection with yield and some fruit quality indicators in olive and peach commercial orchards under different irrigation regimes. Two airborne campaigns were conducted with the Airborne Hyperspectral Scanner (AHS) over olive and peach orchards located in Córdoba, southern Spain. The AHS sensor was flown at three different times on 25 July 2004 and 16 July 2005, collecting 2 m spatial resolution imagery in 80 spectral bands in the 0.43–12.5 μm spectral range. Thermal bands were assessed for the retrieval of land surface temperature using the split-window algorithm and TES ( Temperature-Emissivity-Separation ) method, separating pure crowns from shadows and sunlit soil pixels using the reflectance bands. Stem water potential and stomatal conductance were measured on selected trees at the time of airborne flights over the orchards. Tree fruit yield and quality parameters such as oil, weight and water content (for the olive trees), and fruit volume and weight (for the peach trees) were obtained at harvest and through laboratory analysis. Relationships between airborne-estimated crown temperature minus air temperature and stem water potential yielded r 2 = 0.5 (12:30 GMT) at the olive tree level, and r 2 = 0.81 (9:00 GMT) at the treatment level in peach trees. These results demonstrate that water stress can be detected at the crown level even under the usual water management conditions of commercial orchards. Regressions of yield and fruit quality against remote sensing estimates of crown temperature as an indicator of water stress, yielded r 2 = 0.95 (olive fruit water content) and r 2 = 0.94 (peach fruit mean diameter). These results suggest that high-spatial remote sensing thermal imagery has potential as an indicator of some fruit quality parameters for crop field segmentation and irrigation management purposes. A simulation study using ASTER spectral bands and aggregated pixels for stress detection as a function of irrigation level was conducted in order to study the applicability of medium resolution thermal sensors for the global monitoring of open-canopy tree crops. The determination coefficients obtained between the ASTER-simulated canopy temperature minus air temperature and stem water potential yielded r 2 = 0.58 (12:30 GMT) for olive trees, suggesting the potential for extrapolating these methods to ASTER satellite for global monitoring of open tree canopies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier

Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER

Loading next page...
 
/lp/elsevier/monitoring-yield-and-fruit-quality-parameters-in-open-canopy-tree-8WN39Y3efR
Publisher
Elsevier
Copyright
Copyright © 2006 Elsevier Inc.
ISSN
0034-4257
DOI
10.1016/j.rse.2006.09.014
Publisher site
See Article on Publisher Site

Abstract

Work on water stress detection at tree and orchard levels using a high-spatial airborne thermal sensor is presented, showing its connection with yield and some fruit quality indicators in olive and peach commercial orchards under different irrigation regimes. Two airborne campaigns were conducted with the Airborne Hyperspectral Scanner (AHS) over olive and peach orchards located in Córdoba, southern Spain. The AHS sensor was flown at three different times on 25 July 2004 and 16 July 2005, collecting 2 m spatial resolution imagery in 80 spectral bands in the 0.43–12.5 μm spectral range. Thermal bands were assessed for the retrieval of land surface temperature using the split-window algorithm and TES ( Temperature-Emissivity-Separation ) method, separating pure crowns from shadows and sunlit soil pixels using the reflectance bands. Stem water potential and stomatal conductance were measured on selected trees at the time of airborne flights over the orchards. Tree fruit yield and quality parameters such as oil, weight and water content (for the olive trees), and fruit volume and weight (for the peach trees) were obtained at harvest and through laboratory analysis. Relationships between airborne-estimated crown temperature minus air temperature and stem water potential yielded r 2 = 0.5 (12:30 GMT) at the olive tree level, and r 2 = 0.81 (9:00 GMT) at the treatment level in peach trees. These results demonstrate that water stress can be detected at the crown level even under the usual water management conditions of commercial orchards. Regressions of yield and fruit quality against remote sensing estimates of crown temperature as an indicator of water stress, yielded r 2 = 0.95 (olive fruit water content) and r 2 = 0.94 (peach fruit mean diameter). These results suggest that high-spatial remote sensing thermal imagery has potential as an indicator of some fruit quality parameters for crop field segmentation and irrigation management purposes. A simulation study using ASTER spectral bands and aggregated pixels for stress detection as a function of irrigation level was conducted in order to study the applicability of medium resolution thermal sensors for the global monitoring of open-canopy tree crops. The determination coefficients obtained between the ASTER-simulated canopy temperature minus air temperature and stem water potential yielded r 2 = 0.58 (12:30 GMT) for olive trees, suggesting the potential for extrapolating these methods to ASTER satellite for global monitoring of open tree canopies.

Journal

Remote Sensing of EnvironmentElsevier

Published: Apr 12, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off