Monitoring the degradation of atropine and scopolamine in soil after spiking with naturally contaminated organic millet

Monitoring the degradation of atropine and scopolamine in soil after spiking with naturally... The spread of Datura sp. in European countries influences crop management and implies continuous food safety issues because of tropane alkaloids, atropine and scopolamine, the most relevant natural toxic compounds of this weed. These alkaloids can contaminate cereals to such a level that hampers food/feed related use and diverts batches of contaminated raw materials towards ultimate disposal such as burning. As no unambiguous information has been available on the fate of tropane alkaloids in soils, our study focused on the quantification and follow-up of these toxic residues in a soil experiment where the tropane alkaloids were mixed to the soil in the form of naturally contaminated unhulled millet in 1:40 millet:soil ratio – this approach provides a more realistic scenario compared to standard solution based spiking. To achieve accurate results, soil and millet extraction processes have been validated and a liquid chromatography – mass spectrometry set-up was addressed to provide selective and quantitative analysis. The initial concentration of atropine (75ngg−1) and scopolamine (47ngg−1) in the soil decreased with >90% in 15days and reached a high level of elimination (>97%) in 29days. This observation opens an option for the use of tropane contaminated millet or millet waste other than burning, as these toxic alkaloids can be significantly degraded in the soil system. On the other hand, the persistence of intact tropane alkaloids in soils might be questioned to the extent that calls the attention to the (re)assignment of their supposed allelopathic effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Monitoring the degradation of atropine and scopolamine in soil after spiking with naturally contaminated organic millet

Loading next page...
 
/lp/elsevier/monitoring-the-degradation-of-atropine-and-scopolamine-in-soil-after-mae3dpvBiE
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.344
Publisher site
See Article on Publisher Site

Abstract

The spread of Datura sp. in European countries influences crop management and implies continuous food safety issues because of tropane alkaloids, atropine and scopolamine, the most relevant natural toxic compounds of this weed. These alkaloids can contaminate cereals to such a level that hampers food/feed related use and diverts batches of contaminated raw materials towards ultimate disposal such as burning. As no unambiguous information has been available on the fate of tropane alkaloids in soils, our study focused on the quantification and follow-up of these toxic residues in a soil experiment where the tropane alkaloids were mixed to the soil in the form of naturally contaminated unhulled millet in 1:40 millet:soil ratio – this approach provides a more realistic scenario compared to standard solution based spiking. To achieve accurate results, soil and millet extraction processes have been validated and a liquid chromatography – mass spectrometry set-up was addressed to provide selective and quantitative analysis. The initial concentration of atropine (75ngg−1) and scopolamine (47ngg−1) in the soil decreased with >90% in 15days and reached a high level of elimination (>97%) in 29days. This observation opens an option for the use of tropane contaminated millet or millet waste other than burning, as these toxic alkaloids can be significantly degraded in the soil system. On the other hand, the persistence of intact tropane alkaloids in soils might be questioned to the extent that calls the attention to the (re)assignment of their supposed allelopathic effects.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off