Monitoring atmospheric nitrogen pollution in Guiyang (SW China) by contrasting use of Cinnamomum Camphora leaves, branch bark and bark as biomonitors

Monitoring atmospheric nitrogen pollution in Guiyang (SW China) by contrasting use of Cinnamomum... Moss (as a reference material) and camphor (Cinnamomum Camphora) leaf, branch bark and bark samples were systematically collected across an urban-rural gradient in Guiyang (SW China) to determine the efficacy of using these bio-indicators to evaluate nitrogen (N) pollution. The tissue N concentrations (0.13%–2.70%) and δ15N values (−7.5‰ to +9.3‰) of all of these bio-indicators exhibited large spatial variations, as they recorded higher values in urban areas that quickly decreased with distance from the city center; moreover, both soil N concentrations and soil δ15N values were found no significant differences within each 6 km from the urban to the rural area. This not only suggests that the different N uptake strategies and variety of N responses of these bio-indicators can be reflected by their different susceptibilities to variations in N deposition but also reveals that they are able to indicate that urban N deposition is mostly from traffic and industry (NOx-N), whereas rural N deposition is mainly from agriculture (NHx-N). Compared to previously collected urban moss and camphor leaf samples, the significantly increased δ15N values in current urban moss and camphor leaf samples further indicate a greater contribution of NOx-N than NHx-N to urban N deposition. The feasibility of using the N concentrations and δ15N values of branch bark and bark as biomarkers of N deposition thus was further confirmed through the comparative use of these bio-indicators. It can be concluded that vascular plant leaves, branch bark and bark can be used as useful biomonitoring tools for evaluating atmospheric N pollution. For further study, quantitative criteria for the practical use of these bio-indicators in response to N deposition should be developed and the differences in the δ15N values of different plant parts should also be considered, particularly in urban environments that are severely disrupted by atmospheric pollution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Monitoring atmospheric nitrogen pollution in Guiyang (SW China) by contrasting use of Cinnamomum Camphora leaves, branch bark and bark as biomonitors

Loading next page...
 
/lp/elsevier/monitoring-atmospheric-nitrogen-pollution-in-guiyang-sw-china-by-0q71DQnX0f
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.10.005
Publisher site
See Article on Publisher Site

Abstract

Moss (as a reference material) and camphor (Cinnamomum Camphora) leaf, branch bark and bark samples were systematically collected across an urban-rural gradient in Guiyang (SW China) to determine the efficacy of using these bio-indicators to evaluate nitrogen (N) pollution. The tissue N concentrations (0.13%–2.70%) and δ15N values (−7.5‰ to +9.3‰) of all of these bio-indicators exhibited large spatial variations, as they recorded higher values in urban areas that quickly decreased with distance from the city center; moreover, both soil N concentrations and soil δ15N values were found no significant differences within each 6 km from the urban to the rural area. This not only suggests that the different N uptake strategies and variety of N responses of these bio-indicators can be reflected by their different susceptibilities to variations in N deposition but also reveals that they are able to indicate that urban N deposition is mostly from traffic and industry (NOx-N), whereas rural N deposition is mainly from agriculture (NHx-N). Compared to previously collected urban moss and camphor leaf samples, the significantly increased δ15N values in current urban moss and camphor leaf samples further indicate a greater contribution of NOx-N than NHx-N to urban N deposition. The feasibility of using the N concentrations and δ15N values of branch bark and bark as biomarkers of N deposition thus was further confirmed through the comparative use of these bio-indicators. It can be concluded that vascular plant leaves, branch bark and bark can be used as useful biomonitoring tools for evaluating atmospheric N pollution. For further study, quantitative criteria for the practical use of these bio-indicators in response to N deposition should be developed and the differences in the δ15N values of different plant parts should also be considered, particularly in urban environments that are severely disrupted by atmospheric pollution.

Journal

Environmental PollutionElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off