Monitoring and assessment of the groundwater quality in wadi Al-Arish downstream area, North Sinai (Egypt)

Monitoring and assessment of the groundwater quality in wadi Al-Arish downstream area, North... At a rate of 3 samples a year over 7 years (2008–2014), groundwater quality indicators for 294 samples from 14 groundwater supply wells located on the delta of Wadi Al-Arish, North Sinai (Egypt) were measured and analyzed. The prime objective was to characterize significant and sustained trends in the concentrations of the pH, TDS, Total Alkalinity, Fe2+, Mn2+, Zn2+, NO3−, K+, Pb2+, Al3+, and fecal coliform (FC). Detection and estimation of trends and magnitude were carried out applying the nonparametric Mann-Kendall and Thiel-Sen trend statistical tests, respectively. Geostatistical kriging implemented in ArcGIS 10× was appraised for the spatial distribution of the indicators and their sustained trends. Factor analysis was applied to identify significant sources of quality variation and their loads.Average contents of all indicators exceeded the permissible limits except for Mn. Violation of groundwater quality standards clarified emergence of FC (99.6%), Pb2+ (76.8%), TDS (60.2%), Al3+ (56.6%), NO3− (46.5%), Fe2+ (37.5%), and Mn2+ (14%). Out of the 14 wells, notable upward trends (deterioration) were significant (>95% level) for Mg2+ (100%), TDS (78.5%), NO3− (71.42%), Zn2+ (42.85%), pH (14.28%), K+ (14.28%), and 7.14% for Al3+ and FC. Ranges of attenuation rates (mg/l/year) varied for TDS (52.61–37.59), Mg2+ hardness (3.81–0.14), K+ (0.58–1), pH (0.004–0.027), total alkalinity (−1.89-13.18), NO3− (1.47–0.69), Al3+ (0.002–0.011), Fe2+ (−0.001-0.016), Mn2+ (−0.00004-0.01), Pb2+ (−0.00001-0.002), Zn2+ (0.049–0.018), and FC (5.25–22) in cfu/100 ml.Out of the 14 wells, well no. 9 showed the largest increasing attenuation rates (mg/l/year) that marked NO3− (1.47), K+ (0.58), pH (0.004), and Al3+ (0.002). TDS showed the largest rates of increase of 52.61, and 28.26 for well nos. 5 and 9, respectively. FC showed the highest rate of deterioration of 5.25 in well no. 10. Zn2+ recorded strong deterioration rates of 0.049, and 0.046 for well nos. 12 and 9, respectively. Four factors were found to explain 60.48% of the total variance of the quality variables and in particular, a significant load of TDS, Cl−, EC, SO42−, Na+, Ca2+, Mg2+, NO3−, K+, Pb2+ and Total Alkalinity in decreasing order of influence were identified. Variation in quality parameters originated from anthropogenic sources due to improper well head protection in the urban centers or from the agricultural wastes and the flash floodwater stagnation and intense evaporation in low relief areas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of African Earth Sciences Elsevier

Monitoring and assessment of the groundwater quality in wadi Al-Arish downstream area, North Sinai (Egypt)

Loading next page...
 
/lp/elsevier/monitoring-and-assessment-of-the-groundwater-quality-in-wadi-al-arish-UPUUEGXQAh
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
1464-343X
eISSN
1879-1956
D.O.I.
10.1016/j.jafrearsci.2018.01.016
Publisher site
See Article on Publisher Site

Abstract

At a rate of 3 samples a year over 7 years (2008–2014), groundwater quality indicators for 294 samples from 14 groundwater supply wells located on the delta of Wadi Al-Arish, North Sinai (Egypt) were measured and analyzed. The prime objective was to characterize significant and sustained trends in the concentrations of the pH, TDS, Total Alkalinity, Fe2+, Mn2+, Zn2+, NO3−, K+, Pb2+, Al3+, and fecal coliform (FC). Detection and estimation of trends and magnitude were carried out applying the nonparametric Mann-Kendall and Thiel-Sen trend statistical tests, respectively. Geostatistical kriging implemented in ArcGIS 10× was appraised for the spatial distribution of the indicators and their sustained trends. Factor analysis was applied to identify significant sources of quality variation and their loads.Average contents of all indicators exceeded the permissible limits except for Mn. Violation of groundwater quality standards clarified emergence of FC (99.6%), Pb2+ (76.8%), TDS (60.2%), Al3+ (56.6%), NO3− (46.5%), Fe2+ (37.5%), and Mn2+ (14%). Out of the 14 wells, notable upward trends (deterioration) were significant (>95% level) for Mg2+ (100%), TDS (78.5%), NO3− (71.42%), Zn2+ (42.85%), pH (14.28%), K+ (14.28%), and 7.14% for Al3+ and FC. Ranges of attenuation rates (mg/l/year) varied for TDS (52.61–37.59), Mg2+ hardness (3.81–0.14), K+ (0.58–1), pH (0.004–0.027), total alkalinity (−1.89-13.18), NO3− (1.47–0.69), Al3+ (0.002–0.011), Fe2+ (−0.001-0.016), Mn2+ (−0.00004-0.01), Pb2+ (−0.00001-0.002), Zn2+ (0.049–0.018), and FC (5.25–22) in cfu/100 ml.Out of the 14 wells, well no. 9 showed the largest increasing attenuation rates (mg/l/year) that marked NO3− (1.47), K+ (0.58), pH (0.004), and Al3+ (0.002). TDS showed the largest rates of increase of 52.61, and 28.26 for well nos. 5 and 9, respectively. FC showed the highest rate of deterioration of 5.25 in well no. 10. Zn2+ recorded strong deterioration rates of 0.049, and 0.046 for well nos. 12 and 9, respectively. Four factors were found to explain 60.48% of the total variance of the quality variables and in particular, a significant load of TDS, Cl−, EC, SO42−, Na+, Ca2+, Mg2+, NO3−, K+, Pb2+ and Total Alkalinity in decreasing order of influence were identified. Variation in quality parameters originated from anthropogenic sources due to improper well head protection in the urban centers or from the agricultural wastes and the flash floodwater stagnation and intense evaporation in low relief areas.

Journal

Journal of African Earth SciencesElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off