Molecular dynamics study of competing hydrogen bonding interactions in multicomponent diffusion in polyurethanes

Molecular dynamics study of competing hydrogen bonding interactions in multicomponent diffusion... Understanding multicomponent diffusion in polymers on the molecular-scale could lead to optimization of many practical processes. One important example is the removal of a toxic chemical (penetrant) from polyurethanes, which serve as the binder in many coatings technologies. This work is an equilibrium molecular dynamics (MD) study to characterize the molecular-scale hydrogen bonding (H-bonding) interactions in ternary penetrant, solvent, and polyurethane systems, and how these H-bonds influence the corresponding diffusivities. Homomorphic series of penetrant and solvent species in which molecular size and shape are kept constant while varying polarity or number of H-bonding sites are used to study the influence of hydrogen bond probability and strength on diffusivity. It is found that H-bonding between all species in the ternary mixture as well as penetrant-solvent collisions play a role in determining penetrant diffusivity. The findings provide insight into solvent selection criteria to increase the diffusivity of H-bonding penetrants that are absorbed in polyurethanes for extraction and decontamination applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Molecular dynamics study of competing hydrogen bonding interactions in multicomponent diffusion in polyurethanes

Loading next page...
 
/lp/elsevier/molecular-dynamics-study-of-competing-hydrogen-bonding-interactions-in-BY08714FwE
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2018.02.039
Publisher site
See Article on Publisher Site

Abstract

Understanding multicomponent diffusion in polymers on the molecular-scale could lead to optimization of many practical processes. One important example is the removal of a toxic chemical (penetrant) from polyurethanes, which serve as the binder in many coatings technologies. This work is an equilibrium molecular dynamics (MD) study to characterize the molecular-scale hydrogen bonding (H-bonding) interactions in ternary penetrant, solvent, and polyurethane systems, and how these H-bonds influence the corresponding diffusivities. Homomorphic series of penetrant and solvent species in which molecular size and shape are kept constant while varying polarity or number of H-bonding sites are used to study the influence of hydrogen bond probability and strength on diffusivity. It is found that H-bonding between all species in the ternary mixture as well as penetrant-solvent collisions play a role in determining penetrant diffusivity. The findings provide insight into solvent selection criteria to increase the diffusivity of H-bonding penetrants that are absorbed in polyurethanes for extraction and decontamination applications.

Journal

PolymerElsevier

Published: Mar 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off