Molecular Dynamics Simulations of Protein Unfolding and Limited Refolding: Characterization of Partially Unfolded States of Ubiquitin in 60% Methanol and in Water

Molecular Dynamics Simulations of Protein Unfolding and Limited Refolding: Characterization of... Extensive experimental data are available on the native, partially and fully unfolded states of ubiquitin. Two and three-dimensional NMR experiments of a partially unfolded form of the protein in 60% methanol indicate that approximately one-half of the molecule contains disrupted but native-like structure while the other half is unstructured and/or contains non-native structure. In contrast, the interpretation of hydrogen-exchange data have led to the conclusion that this state is native-like. Thus, there are discrepancies between the experimental studies, or interpretations based on the data. We compare the results of molecular dynamics simulations, under varying conditions, with the experimental results. The simulations extend past 0.5 ns and include explicit solvent molecules: either pure water or 60% methanol. To begin with, ubiquitin was thermally denatured in water (at 498 K). Two particular structures, or “aliquots”, during the unfolding process were selected for further study (60 and 198 ps). These structures were then simulated separately in water and 60% methanol at a lower and experimentally meaningful temperature (335 K). The conformations generated from the structure extracted later in the simulation contained significant amounts of non-native structure in the presence of methanol while satisfying both the NMR and hydrogen exchange data. In fact, clearly non-native regions of the structure yielded the desired protection from hydrogen exchange. In contrast, an earlier, more native-like, intermediate did not do as well at predicting the hydrogen-exchange behavior and was inconsistent with the NMR data. These data suggest that the results and interpretations using the different experimental techniques can be reconciled by a single state. This finding also brings into question the practice of interpreting protection to hydrogen exchange in terms of native secondary and tertiary structure, especially when one has weak patterns and low protection factors. When the partially unfolded states were placed in pure water, the protein collapsed and began to refold. Therefore, the desired solvent-dependent properties were observed: the partially unfolded conformations with increased exposure of hydrophobic residues remained expanded in methanol but collapsed in water as the non-polar groups minimized their exposure to solvent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Biology Elsevier

Molecular Dynamics Simulations of Protein Unfolding and Limited Refolding: Characterization of Partially Unfolded States of Ubiquitin in 60% Methanol and in Water

Loading next page...
 
/lp/elsevier/molecular-dynamics-simulations-of-protein-unfolding-and-limited-8jwMNhVmaT
Publisher
Elsevier
Copyright
Copyright © 1995 Academic Press
ISSN
0022-2836
DOI
10.1006/jmbi.1994.0156
Publisher site
See Article on Publisher Site

Abstract

Extensive experimental data are available on the native, partially and fully unfolded states of ubiquitin. Two and three-dimensional NMR experiments of a partially unfolded form of the protein in 60% methanol indicate that approximately one-half of the molecule contains disrupted but native-like structure while the other half is unstructured and/or contains non-native structure. In contrast, the interpretation of hydrogen-exchange data have led to the conclusion that this state is native-like. Thus, there are discrepancies between the experimental studies, or interpretations based on the data. We compare the results of molecular dynamics simulations, under varying conditions, with the experimental results. The simulations extend past 0.5 ns and include explicit solvent molecules: either pure water or 60% methanol. To begin with, ubiquitin was thermally denatured in water (at 498 K). Two particular structures, or “aliquots”, during the unfolding process were selected for further study (60 and 198 ps). These structures were then simulated separately in water and 60% methanol at a lower and experimentally meaningful temperature (335 K). The conformations generated from the structure extracted later in the simulation contained significant amounts of non-native structure in the presence of methanol while satisfying both the NMR and hydrogen exchange data. In fact, clearly non-native regions of the structure yielded the desired protection from hydrogen exchange. In contrast, an earlier, more native-like, intermediate did not do as well at predicting the hydrogen-exchange behavior and was inconsistent with the NMR data. These data suggest that the results and interpretations using the different experimental techniques can be reconciled by a single state. This finding also brings into question the practice of interpreting protection to hydrogen exchange in terms of native secondary and tertiary structure, especially when one has weak patterns and low protection factors. When the partially unfolded states were placed in pure water, the protein collapsed and began to refold. Therefore, the desired solvent-dependent properties were observed: the partially unfolded conformations with increased exposure of hydrophobic residues remained expanded in methanol but collapsed in water as the non-polar groups minimized their exposure to solvent.

Journal

Journal of Molecular BiologyElsevier

Published: Mar 31, 1995

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off