Molecular dynamics simulation of the high-temperature pyrolysis of methylcyclohexane

Molecular dynamics simulation of the high-temperature pyrolysis of methylcyclohexane To better understand the initiation and intermediate reaction mechanisms associated with the high-temperature pyrolysis of methylcyclohexane (MCH), the dissociation of MCH is investigated using reactive molecular dynamics (RMD) and density functional theory (DFT) calculations. It is observed that the pyrolysis of MCH is initiated by four types of reaction channels. The initiation of the decomposition is mainly through the CC bond homolysis of the six-membered ring, leading to ring opening and the formation of C7H14 diradicals. Subsequently, the biradicals undergo successive decomposition by the β-scission of the CC bonds to form ethylene. Furthermore, to provide a detailed description of the pyrolysis behavior of MCH, the distributions of key products, intermediate reactions and corresponding kinetic behavior are systematically analyzed at the atomic level. The apparent activation energy extracted from the RMD simulations is 263.60 kJ/mol at temperatures from 2300 K to 3100 K, which is reasonably consistent with the experimental results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fuel Elsevier

Molecular dynamics simulation of the high-temperature pyrolysis of methylcyclohexane

Loading next page...
 
/lp/elsevier/molecular-dynamics-simulation-of-the-high-temperature-pyrolysis-of-BCakr6sEKi
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0016-2361
D.O.I.
10.1016/j.fuel.2017.12.055
Publisher site
See Article on Publisher Site

Abstract

To better understand the initiation and intermediate reaction mechanisms associated with the high-temperature pyrolysis of methylcyclohexane (MCH), the dissociation of MCH is investigated using reactive molecular dynamics (RMD) and density functional theory (DFT) calculations. It is observed that the pyrolysis of MCH is initiated by four types of reaction channels. The initiation of the decomposition is mainly through the CC bond homolysis of the six-membered ring, leading to ring opening and the formation of C7H14 diradicals. Subsequently, the biradicals undergo successive decomposition by the β-scission of the CC bonds to form ethylene. Furthermore, to provide a detailed description of the pyrolysis behavior of MCH, the distributions of key products, intermediate reactions and corresponding kinetic behavior are systematically analyzed at the atomic level. The apparent activation energy extracted from the RMD simulations is 263.60 kJ/mol at temperatures from 2300 K to 3100 K, which is reasonably consistent with the experimental results.

Journal

FuelElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off