Molecular dynamics of protein complexes from four-dimensional cryo-electron microscopy

Molecular dynamics of protein complexes from four-dimensional cryo-electron microscopy Cryo-electron microscopy of single particles offers a unique opportunity to detect and quantify conformational variation of protein complexes. Different conformers may, in principle, be distinguished by classification of individual projections in which image differences arising from viewing geometry are disentangled from variability in the underlying structures by “multiple particle analysis”—MPA. If the various conformers represent dynamically related states of the same complex, MPA has the potential to visualize transition states, and eventually to yield movies of the dynamic process. Ordering the various conformers into a time series is facilitated if cryo-EM data are taken at successive times from a system that is known to be developing in time. Virus maturation represents a relatively tractable dynamic process because the changes are large and irreversible and the rate of the natural process may be conveniently slowed in vitro by adjusting the environmental conditions. We describe the strategy employed in a recent analysis of herpes simplex virus procapsid maturation (Nat. Struct. Biol. 10 (2003) 334–341), compare it with previous work on the maturation of bacteriophage HK97 procapsid, and discuss various factors that impinge on the feasibility of performing similar experimental analyses of molecular dynamics in the general case. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Biology Elsevier

Molecular dynamics of protein complexes from four-dimensional cryo-electron microscopy

Loading next page...
 
/lp/elsevier/molecular-dynamics-of-protein-complexes-from-four-dimensional-cryo-Elfnb7TPK7
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Ltd
ISSN
1047-8477
eISSN
1095-8657
DOI
10.1016/j.jsb.2004.02.006
Publisher site
See Article on Publisher Site

Abstract

Cryo-electron microscopy of single particles offers a unique opportunity to detect and quantify conformational variation of protein complexes. Different conformers may, in principle, be distinguished by classification of individual projections in which image differences arising from viewing geometry are disentangled from variability in the underlying structures by “multiple particle analysis”—MPA. If the various conformers represent dynamically related states of the same complex, MPA has the potential to visualize transition states, and eventually to yield movies of the dynamic process. Ordering the various conformers into a time series is facilitated if cryo-EM data are taken at successive times from a system that is known to be developing in time. Virus maturation represents a relatively tractable dynamic process because the changes are large and irreversible and the rate of the natural process may be conveniently slowed in vitro by adjusting the environmental conditions. We describe the strategy employed in a recent analysis of herpes simplex virus procapsid maturation (Nat. Struct. Biol. 10 (2003) 334–341), compare it with previous work on the maturation of bacteriophage HK97 procapsid, and discuss various factors that impinge on the feasibility of performing similar experimental analyses of molecular dynamics in the general case.

Journal

Journal of Structural BiologyElsevier

Published: Sep 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off