Molecular and endocrine factors involved in future dominant follicle dynamics during the induction of luteolysis in Bos indicus cows

Molecular and endocrine factors involved in future dominant follicle dynamics during the... The growth profiles of the future dominant follicle (DF) and subordinate follicle (SF) and the gene expression of the granulosa cells during luteolysis induction in Bos indicus cows were evaluated. Forty cows were synchronized with a progesterone and estradiol based protocol. After synchronization, cows with a corpus luteum (CL) were evaluated by ultrasonography every 12 h, beginning at eight days post ovulation. Cows identified with a follicle of at least 6.0 mm in diameter in the second wave were split into two groups (BD-before follicular deviation and AD-after follicular deviation. In the BD group cows received 500 μg of cloprostenol (a synthetic analogue of prostaglandin F2α) when the DF reached a mean diameter of 7.0 mm (6.5–7.5 mm). In the AD group, cows received 500 μg of cloprostenol when the DF reached a mean diameter of 8.0 mm (7.5–8.5 mm). Cows in both groups were submitted to aspiration of the DF at 96 and 72 h after prostaglandin was given. Follicular aspirations were performed to quantify IGF1R, LHR and PAPPA transcripts in the granulosa cells. The diameter of the DF at the moment of prostaglandin administration (P = 0.001) and the growth rate of the SF (P = 0.05) were greater in the AD group. There was greater abundance of LHR transcripts in BD cows (P = 0.04). The remaining variables tested were similar between the experimental groups (P > 0.05). In conclusion, the induction of luteolysis before follicular deviation does not interfere with dominant follicle dynamics. However, it causes granulosa cell LHR down regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Theriogenology Elsevier

Molecular and endocrine factors involved in future dominant follicle dynamics during the induction of luteolysis in Bos indicus cows

Loading next page...
 
/lp/elsevier/molecular-and-endocrine-factors-involved-in-future-dominant-follicle-mNG0dAbmdJ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0093-691X
eISSN
1879-3231
D.O.I.
10.1016/j.theriogenology.2018.01.019
Publisher site
See Article on Publisher Site

Abstract

The growth profiles of the future dominant follicle (DF) and subordinate follicle (SF) and the gene expression of the granulosa cells during luteolysis induction in Bos indicus cows were evaluated. Forty cows were synchronized with a progesterone and estradiol based protocol. After synchronization, cows with a corpus luteum (CL) were evaluated by ultrasonography every 12 h, beginning at eight days post ovulation. Cows identified with a follicle of at least 6.0 mm in diameter in the second wave were split into two groups (BD-before follicular deviation and AD-after follicular deviation. In the BD group cows received 500 μg of cloprostenol (a synthetic analogue of prostaglandin F2α) when the DF reached a mean diameter of 7.0 mm (6.5–7.5 mm). In the AD group, cows received 500 μg of cloprostenol when the DF reached a mean diameter of 8.0 mm (7.5–8.5 mm). Cows in both groups were submitted to aspiration of the DF at 96 and 72 h after prostaglandin was given. Follicular aspirations were performed to quantify IGF1R, LHR and PAPPA transcripts in the granulosa cells. The diameter of the DF at the moment of prostaglandin administration (P = 0.001) and the growth rate of the SF (P = 0.05) were greater in the AD group. There was greater abundance of LHR transcripts in BD cows (P = 0.04). The remaining variables tested were similar between the experimental groups (P > 0.05). In conclusion, the induction of luteolysis before follicular deviation does not interfere with dominant follicle dynamics. However, it causes granulosa cell LHR down regulation.

Journal

TheriogenologyElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off