Moisture hysteresis influence on mass transfer through bio-based building materials in dynamic state

Moisture hysteresis influence on mass transfer through bio-based building materials in dynamic state Bio-based materials are increasingly present in the constitution of the building envelops thanks to their numerous advantages such as good thermo-hygric performances, weak environmental impact, efficient regulation of the perceived indoor air quality and human comfort... The analysis of moisture transfer is necessary to increase the efficiency of these materials and to ensure building sustainability. Actually, most of hygrothermal models neglect the moisture hysteresis effect, arguing the weak impact on the obtained results. Thus, a 3D numerical model was built on COMSOL Multiphysics, taking into account the hysteresis phenomenon to assess the impact of hysteresis effects. The model was validated thanks to experimental tests performed on hemp concrete and rape straw concrete. Tests were carried out under various dynamic hygric solicitations, with a regulated climatic chamber. The results have been compared in steady and transient states, with and without the effect of moisture hysteresis. Results have shown that hysteresis could be neglected in steady state, if the relative humidity range did not reach the capillary condensation. In this case, a model based on the main adsorption isotherm could lead to reasonable approximation, with weak calculation costs. For the analysis of a wall under real climatic solicitations, which corresponds to a non-steady state, neglecting the moisture hysteresis could lead to significant discrepancies, especially in terms of sample moist mass (and consequently moisture content or absolute humidity). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Energy and Buildings Elsevier

Moisture hysteresis influence on mass transfer through bio-based building materials in dynamic state

Loading next page...
 
/lp/elsevier/moisture-hysteresis-influence-on-mass-transfer-through-bio-based-Mwq6zKRjRI
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0378-7788
eISSN
1872-6178
D.O.I.
10.1016/j.enbuild.2018.01.067
Publisher site
See Article on Publisher Site

Abstract

Bio-based materials are increasingly present in the constitution of the building envelops thanks to their numerous advantages such as good thermo-hygric performances, weak environmental impact, efficient regulation of the perceived indoor air quality and human comfort... The analysis of moisture transfer is necessary to increase the efficiency of these materials and to ensure building sustainability. Actually, most of hygrothermal models neglect the moisture hysteresis effect, arguing the weak impact on the obtained results. Thus, a 3D numerical model was built on COMSOL Multiphysics, taking into account the hysteresis phenomenon to assess the impact of hysteresis effects. The model was validated thanks to experimental tests performed on hemp concrete and rape straw concrete. Tests were carried out under various dynamic hygric solicitations, with a regulated climatic chamber. The results have been compared in steady and transient states, with and without the effect of moisture hysteresis. Results have shown that hysteresis could be neglected in steady state, if the relative humidity range did not reach the capillary condensation. In this case, a model based on the main adsorption isotherm could lead to reasonable approximation, with weak calculation costs. For the analysis of a wall under real climatic solicitations, which corresponds to a non-steady state, neglecting the moisture hysteresis could lead to significant discrepancies, especially in terms of sample moist mass (and consequently moisture content or absolute humidity).

Journal

Energy and BuildingsElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off