Modulation of the spin transport properties of the iron-phthalocyanine molecular junction by carbon chains with different connection sites

Modulation of the spin transport properties of the iron-phthalocyanine molecular junction by... Based on the non-equilibrium Green's function method combined with the density functional theory, the spin transport properties of an iron-phthalocyanine (FePc) molecule connected to two Au electrodes by carbon chains are investigated, and three kinds of connecting position between FePc molecule and carbon chains are considered. It is found that the spin filtering effect and the negative differential resistance (NDR) behavior in these systems can be achieved in the calculated bias region. However, the efficiency and the bias region of spin filtering are affected significantly by the connecting positions. The above results are explained by the spin-resolved transmission spectrum, electron transmitting path, molecular projected self consistent Hamiltonian state, and the local density of states (LDOS) analyses. Our calculations demonstrate a promising modification for developing molecule spintronic devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Modulation of the spin transport properties of the iron-phthalocyanine molecular junction by carbon chains with different connection sites

Loading next page...
 
/lp/elsevier/modulation-of-the-spin-transport-properties-of-the-iron-phthalocyanine-9Ny1xv2Fzp
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2016.04.033
Publisher site
See Article on Publisher Site

Abstract

Based on the non-equilibrium Green's function method combined with the density functional theory, the spin transport properties of an iron-phthalocyanine (FePc) molecule connected to two Au electrodes by carbon chains are investigated, and three kinds of connecting position between FePc molecule and carbon chains are considered. It is found that the spin filtering effect and the negative differential resistance (NDR) behavior in these systems can be achieved in the calculated bias region. However, the efficiency and the bias region of spin filtering are affected significantly by the connecting positions. The above results are explained by the spin-resolved transmission spectrum, electron transmitting path, molecular projected self consistent Hamiltonian state, and the local density of states (LDOS) analyses. Our calculations demonstrate a promising modification for developing molecule spintronic devices.

Journal

Organic ElectronicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off