Models on Snowball Earth and Cambrian explosion: A synopsis

Models on Snowball Earth and Cambrian explosion: A synopsis During the late Proterozoic from 1000 to 542 Ma, the Earth is thought to have been frozen at least during two times: in the Sturtian (715–680 Ma) and in the Marinoan (680–635 Ma) global glaciations. Following the Marinoan Snowball Earth, large multi-cellular animals of the Ediacara fauna flourished as a prelude to the Phanerozoic world. Here we summarize the most popular models on the cause and cessation of Snowball Earth. Episodic decrease of greenhouse gas occurs through the effect of erosion and weathering promoted by either mountain building or by an increase in the coastlines during the break-up of supercontinents. Effects on the globe caused by true polar wander, eruption of voluminous flood basalts, or dramatic reduction in planetary obliquity can also lead to ice ages and mass extinction. A radically revised concept based on Earth's magnetic intensity has also been proposed, which explains the true polar wander through a quasi-polar dynamo model. The ‘switch-on’ and ‘switch-off’ of the Earth's strong dynamo can lead to the onset and disappearance of the Snowball Earth. The galactic model infers that gamma ray burst associated with starburst creates huge amounts of clouds which would cut off sun rays and freeze the Earth. The Snowball Earth event is considered to have exerted a significant control on the subsequent revolutionary changes in the evolution of life forms. Although according to the biological clock, extensive re-organisation of genome is thought to have been completed by around 900 Ma, the evolution of modern life in Cambrian occurred only after the geochemical bridge was in place with elevated oxygen and nutrient levels in lakes that developed within continental rifts where the hydrothermal system in the granitic basement created the chemical environment enriched in Ca 2+ , Fe 2+ , V, Mo, HCO 3 , phosphate and other elements required for building the skeleton and bone of the first modern animals. With cosmic radiation exerting a significant control on the mutation, the Neoproterozoic Earth history illustrates the possible link from Galaxy to the genome level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Gondwana Research Elsevier

Models on Snowball Earth and Cambrian explosion: A synopsis

Gondwana Research, Volume 14 (1) – Aug 1, 2008

Loading next page...
 
/lp/elsevier/models-on-snowball-earth-and-cambrian-explosion-a-synopsis-bR7DXlxH15
Publisher
Elsevier
Copyright
Copyright © 2008 International Association for Gondwana Research
ISSN
1342-937X
DOI
10.1016/j.gr.2008.01.004
Publisher site
See Article on Publisher Site

Abstract

During the late Proterozoic from 1000 to 542 Ma, the Earth is thought to have been frozen at least during two times: in the Sturtian (715–680 Ma) and in the Marinoan (680–635 Ma) global glaciations. Following the Marinoan Snowball Earth, large multi-cellular animals of the Ediacara fauna flourished as a prelude to the Phanerozoic world. Here we summarize the most popular models on the cause and cessation of Snowball Earth. Episodic decrease of greenhouse gas occurs through the effect of erosion and weathering promoted by either mountain building or by an increase in the coastlines during the break-up of supercontinents. Effects on the globe caused by true polar wander, eruption of voluminous flood basalts, or dramatic reduction in planetary obliquity can also lead to ice ages and mass extinction. A radically revised concept based on Earth's magnetic intensity has also been proposed, which explains the true polar wander through a quasi-polar dynamo model. The ‘switch-on’ and ‘switch-off’ of the Earth's strong dynamo can lead to the onset and disappearance of the Snowball Earth. The galactic model infers that gamma ray burst associated with starburst creates huge amounts of clouds which would cut off sun rays and freeze the Earth. The Snowball Earth event is considered to have exerted a significant control on the subsequent revolutionary changes in the evolution of life forms. Although according to the biological clock, extensive re-organisation of genome is thought to have been completed by around 900 Ma, the evolution of modern life in Cambrian occurred only after the geochemical bridge was in place with elevated oxygen and nutrient levels in lakes that developed within continental rifts where the hydrothermal system in the granitic basement created the chemical environment enriched in Ca 2+ , Fe 2+ , V, Mo, HCO 3 , phosphate and other elements required for building the skeleton and bone of the first modern animals. With cosmic radiation exerting a significant control on the mutation, the Neoproterozoic Earth history illustrates the possible link from Galaxy to the genome level.

Journal

Gondwana ResearchElsevier

Published: Aug 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off