Modelling of an alternative process technology for biofuel production and assessment of its environmental impacts

Modelling of an alternative process technology for biofuel production and assessment of its... It is easy to predict that in the coming years in Europe biodiesel will play an increasingly important role in the transport sector. The European Commission has set at 10% by 2020 the proportion that biofuels should represent in total fuel used in transport and biodiesel is currently the most widely used biofuel in the European Union. The most common way to produce biodiesel is through transesterification of vegetable oils with methanol; glycerol is the main co-product. Although glycerol has many industrial applications, increased production of biodiesel could make complete market placement of this chemical difficult. In this context, increasing interest is paid towards different methods of biodiesel production that provide alternative co-products. This article offers a “cradle to gate” evaluation of potential environmental impacts caused by an innovative process for the production of DMC-BioD, an alternative biofuel to biodiesel which does not involve the production of glycerol. Transesterification of soybean oil with dimethyl carbonate to obtain DMC-BioD has been modelled with the aid of the Chemical Process Simulation software Aspen HYSYS® that produced the material and energy balances and the preliminary sizing of the process units. Results have been also compared with background information from database on the production of conventional biodiesel from soybean oil and of fossil diesel. The study suggests that DMC-BioD can be an interesting route for the production of biofuels from an environmental point of view. Compared to fossil diesel, GHG (Greenhouse gases) emissions can be decreased, although trade-offs are registered in other environmental categories. In any case, future investigation is needed in order to understand and optimize its environmental profile through the entire life cycle and possibly bring its production to a commercial scale. This preliminary analysis of potential environmental impacts provides useful information to continue the testing and scale-up phases and to improve the environmental performances of the process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Modelling of an alternative process technology for biofuel production and assessment of its environmental impacts

Loading next page...
 
/lp/elsevier/modelling-of-an-alternative-process-technology-for-biofuel-production-SqhVVSlGKJ
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2016.02.047
Publisher site
See Article on Publisher Site

Abstract

It is easy to predict that in the coming years in Europe biodiesel will play an increasingly important role in the transport sector. The European Commission has set at 10% by 2020 the proportion that biofuels should represent in total fuel used in transport and biodiesel is currently the most widely used biofuel in the European Union. The most common way to produce biodiesel is through transesterification of vegetable oils with methanol; glycerol is the main co-product. Although glycerol has many industrial applications, increased production of biodiesel could make complete market placement of this chemical difficult. In this context, increasing interest is paid towards different methods of biodiesel production that provide alternative co-products. This article offers a “cradle to gate” evaluation of potential environmental impacts caused by an innovative process for the production of DMC-BioD, an alternative biofuel to biodiesel which does not involve the production of glycerol. Transesterification of soybean oil with dimethyl carbonate to obtain DMC-BioD has been modelled with the aid of the Chemical Process Simulation software Aspen HYSYS® that produced the material and energy balances and the preliminary sizing of the process units. Results have been also compared with background information from database on the production of conventional biodiesel from soybean oil and of fossil diesel. The study suggests that DMC-BioD can be an interesting route for the production of biofuels from an environmental point of view. Compared to fossil diesel, GHG (Greenhouse gases) emissions can be decreased, although trade-offs are registered in other environmental categories. In any case, future investigation is needed in order to understand and optimize its environmental profile through the entire life cycle and possibly bring its production to a commercial scale. This preliminary analysis of potential environmental impacts provides useful information to continue the testing and scale-up phases and to improve the environmental performances of the process.

Journal

Journal of Cleaner ProductionElsevier

Published: May 20, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off