Modelling heat loss effects in high temperature oxy-fuel flames with an efficient and robust non-premixed flamelet approach

Modelling heat loss effects in high temperature oxy-fuel flames with an efficient and robust... The non-premixed steady flamelet model is extended by two simple, robust and effective heat loss modelling approaches. The heat release damping (HRD) approach decreases the chemical source term in the energy equation by a constant factor, while the artificial radiation (AR) approach introduces an augmented temperature dependent radiative source term. The models are tested in a simulation of the 0.78 MWth IFRF (International Flame Research Foundation) pilot scale, non-premixed, natural gas/oxygen flame. Both approaches are applied in steady laminar flamelet calculations with detailed chemistry, tabulating the thermo-chemical state as a function of mixture fraction and normalised heat loss. The turbulence-chemistry interaction is modelled using the β-PDF approach. An enthalpy transport equation is solved to keep track of the heat loss, while radiative heat transfer is calculated by the P-1 model. We observe that the major species, temperature, velocities and velocity fluctuations show a good agreement with the available experimental data. The heat loss modelling yields a significant improvement over the adiabatic model. Interestingly, both heat loss models (HRD and AR) show negligible differences in the simulations of the turbulent flame and permit to apply the steady laminar flamelet model to oxy-fuel processes in a simple, robust and user friendly manner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fuel Elsevier

Modelling heat loss effects in high temperature oxy-fuel flames with an efficient and robust non-premixed flamelet approach

Loading next page...
 
/lp/elsevier/modelling-heat-loss-effects-in-high-temperature-oxy-fuel-flames-with-SjbQMS9HG9
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0016-2361
D.O.I.
10.1016/j.fuel.2017.11.127
Publisher site
See Article on Publisher Site

Abstract

The non-premixed steady flamelet model is extended by two simple, robust and effective heat loss modelling approaches. The heat release damping (HRD) approach decreases the chemical source term in the energy equation by a constant factor, while the artificial radiation (AR) approach introduces an augmented temperature dependent radiative source term. The models are tested in a simulation of the 0.78 MWth IFRF (International Flame Research Foundation) pilot scale, non-premixed, natural gas/oxygen flame. Both approaches are applied in steady laminar flamelet calculations with detailed chemistry, tabulating the thermo-chemical state as a function of mixture fraction and normalised heat loss. The turbulence-chemistry interaction is modelled using the β-PDF approach. An enthalpy transport equation is solved to keep track of the heat loss, while radiative heat transfer is calculated by the P-1 model. We observe that the major species, temperature, velocities and velocity fluctuations show a good agreement with the available experimental data. The heat loss modelling yields a significant improvement over the adiabatic model. Interestingly, both heat loss models (HRD and AR) show negligible differences in the simulations of the turbulent flame and permit to apply the steady laminar flamelet model to oxy-fuel processes in a simple, robust and user friendly manner.

Journal

FuelElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off