Modelling distributions of arboreal and ground-dwelling mammals in relation to climate, nutrients, plant chemical defences and vegetation structure in the eucalypt forests of southeastern Australia

Modelling distributions of arboreal and ground-dwelling mammals in relation to climate,... Numerous studies over the past 15 years have investigated relationships between the distributions of arboreal and ground-dwelling mammals and environmental, structural and leaf compositional variables in the temperate Eucalyptus forests of southeastern and northeastern New South Wales, Australia. This paper draws together the general trends emerging from these studies and identifies some clear messages for the future modelling of regional biodiversity in these forests. The studies on arboreal mammals (all are marsupials in these forests) reviewed here generally fall into two broad categories: those that conclude that the nutrient status of forests is the prime determinant of habitat quality for arboreal marsupials and those that put equal or greater emphasis on variables related to structural characteristics of forests. Recent studies suggest a hierarchical model that is consistent with both of these emphases. They postulate that a proportion of temperature eucalypt forests, regardless of their climatic or structural characteristics, cannot support permanent populations of arboreal marsupials, especially leaf-eating species, due to low food quality and/or high phytochemical toxicity. Above a postulated nutritional or phytotoxicological ‘threshold’, food quality is adequate and other variables, including climatic and structural ones, apparently interact to determine habitat quality. Hence, differences in the extent to which different studies sample regional environmental variability, the range of nutrient status and forest structure, are likely to greatly affect which variables appear most significant in models of habitat requirements. Structural characteristics (measured as habitat complexity) of the forest have emerged as explanatory variables for the ground-living mammals also. Variables such as nutrients, lithology, terrain and climate exhibit a different trend to that seen for arboreal marsupials. Relative abundance of small ground-dwelling mammals is negatively correlated with site nutrient status as indicated by nutrient concentrations in tree foliage. Small mammals are present at all measured nutrient levels, but their abundance falls substantially as habitat complexity decreases. The influence of nutrients is masked in habitats of high complexity, there being no relationship with nutrient status. Many ground-living mammals occur across the gradients of lithology, terrain and climate, although there is wide variation in relative abundance for some species. The importance of structural variables for explaining distributions of both arboreal and ground-living fauna in eucalypt forests indicates that adequate modelling of habitat requirements for these fauna can only be achieved if surveys obtain adequate data on forest structure to encompass gradients in seral stage and disturbance history. The present-day mammalian fauna of the southeastern Australian forests has been influenced strongly by the effects of urbanisation, clearing for farming, forestry activities and fire on forest structural complexity and nutrient dynamics as well as by predation by introduced camivores. While modelling with respect to broadly defined climatic and terrain variables might be useful for broad-scale spatial prediction of faunal distributions, such models are unlikely to provide descriptions of habitat requirements or predictions of impacts of forest management at a scale necessary for sustainable management of faunal biodiversity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Forest Ecology and Management Elsevier

Modelling distributions of arboreal and ground-dwelling mammals in relation to climate, nutrients, plant chemical defences and vegetation structure in the eucalypt forests of southeastern Australia

Loading next page...
 
/lp/elsevier/modelling-distributions-of-arboreal-and-ground-dwelling-mammals-in-I6Re0lBXnS
Publisher
Elsevier
Copyright
Copyright © 1996 Elsevier Science B.V. All rights reserved.
ISSN
0378-1127
eISSN
1872-7042
D.O.I.
10.1016/S0378-1127(96)03757-7
Publisher site
See Article on Publisher Site

Abstract

Numerous studies over the past 15 years have investigated relationships between the distributions of arboreal and ground-dwelling mammals and environmental, structural and leaf compositional variables in the temperate Eucalyptus forests of southeastern and northeastern New South Wales, Australia. This paper draws together the general trends emerging from these studies and identifies some clear messages for the future modelling of regional biodiversity in these forests. The studies on arboreal mammals (all are marsupials in these forests) reviewed here generally fall into two broad categories: those that conclude that the nutrient status of forests is the prime determinant of habitat quality for arboreal marsupials and those that put equal or greater emphasis on variables related to structural characteristics of forests. Recent studies suggest a hierarchical model that is consistent with both of these emphases. They postulate that a proportion of temperature eucalypt forests, regardless of their climatic or structural characteristics, cannot support permanent populations of arboreal marsupials, especially leaf-eating species, due to low food quality and/or high phytochemical toxicity. Above a postulated nutritional or phytotoxicological ‘threshold’, food quality is adequate and other variables, including climatic and structural ones, apparently interact to determine habitat quality. Hence, differences in the extent to which different studies sample regional environmental variability, the range of nutrient status and forest structure, are likely to greatly affect which variables appear most significant in models of habitat requirements. Structural characteristics (measured as habitat complexity) of the forest have emerged as explanatory variables for the ground-living mammals also. Variables such as nutrients, lithology, terrain and climate exhibit a different trend to that seen for arboreal marsupials. Relative abundance of small ground-dwelling mammals is negatively correlated with site nutrient status as indicated by nutrient concentrations in tree foliage. Small mammals are present at all measured nutrient levels, but their abundance falls substantially as habitat complexity decreases. The influence of nutrients is masked in habitats of high complexity, there being no relationship with nutrient status. Many ground-living mammals occur across the gradients of lithology, terrain and climate, although there is wide variation in relative abundance for some species. The importance of structural variables for explaining distributions of both arboreal and ground-living fauna in eucalypt forests indicates that adequate modelling of habitat requirements for these fauna can only be achieved if surveys obtain adequate data on forest structure to encompass gradients in seral stage and disturbance history. The present-day mammalian fauna of the southeastern Australian forests has been influenced strongly by the effects of urbanisation, clearing for farming, forestry activities and fire on forest structural complexity and nutrient dynamics as well as by predation by introduced camivores. While modelling with respect to broadly defined climatic and terrain variables might be useful for broad-scale spatial prediction of faunal distributions, such models are unlikely to provide descriptions of habitat requirements or predictions of impacts of forest management at a scale necessary for sustainable management of faunal biodiversity.

Journal

Forest Ecology and ManagementElsevier

Published: Sep 1, 1996

References

  • Insect grazing on Eucalyptus in response to variation in leaf tannins and nitrogen
    Fox, L.R.; Macauley, B.J.
  • Modelling habitat quality for arboreal marsupials in the south coastal forests of New South Wales, Australia
    Pausas, J.G.; Braithwaite, L.W.; Austin, M.P.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off