Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough

Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough This study contributes a new model to simulate the evaporation and dispersion of sputum droplets from human coughs or sneezes. It is the first time different chemical components have been included in order to estimate the transport of sputum or similar biological droplets. This modified model demonstrates the ability to describe real-world phenomena that the widely used single droplet model lacks. Evaporation and dispersion of airborne sputum droplets originating from a human cough are simulated using this model combined with an initially buoyant turbulent jet. Constituents of sputum droplets such as NaCl, amino acids, carbohydrates, and lipids are included. Effects of these chemical components on evaporation rate, velocity, and temperature of droplets are investigated in detail. The results obtained for sputum droplets will provide a perspective of what conditions the viruses within a droplet might face upon being ejected from the mouth during a cough. Finally, computational fluid dynamics (CFD) and probability density function (PDF) techniques were used to complement the new model with a simulation of a cough jet and the dynamics of droplet nuclei in confined spaces. Numerical results indicate that a 10 microns sputum droplet will evaporate to become a droplet nucleus (3.5 microns) in 0.55 s at 0.8 or 80% RH, in 0.3 s at 0.5 or 50% RH, and in 0.25 s at 0.2 or 20% RH. The droplet temperature decreases rapidly from human body temperature to room temperature, which may affect the viability of any carried virus. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough

Loading next page...
 
/lp/elsevier/modeling-the-evaporation-and-dispersion-of-airborne-sputum-droplets-l4r7D1fQTQ
Publisher
Elsevier
Copyright
Copyright © 2011 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2011.04.011
Publisher site
See Article on Publisher Site

Abstract

This study contributes a new model to simulate the evaporation and dispersion of sputum droplets from human coughs or sneezes. It is the first time different chemical components have been included in order to estimate the transport of sputum or similar biological droplets. This modified model demonstrates the ability to describe real-world phenomena that the widely used single droplet model lacks. Evaporation and dispersion of airborne sputum droplets originating from a human cough are simulated using this model combined with an initially buoyant turbulent jet. Constituents of sputum droplets such as NaCl, amino acids, carbohydrates, and lipids are included. Effects of these chemical components on evaporation rate, velocity, and temperature of droplets are investigated in detail. The results obtained for sputum droplets will provide a perspective of what conditions the viruses within a droplet might face upon being ejected from the mouth during a cough. Finally, computational fluid dynamics (CFD) and probability density function (PDF) techniques were used to complement the new model with a simulation of a cough jet and the dynamics of droplet nuclei in confined spaces. Numerical results indicate that a 10 microns sputum droplet will evaporate to become a droplet nucleus (3.5 microns) in 0.55 s at 0.8 or 80% RH, in 0.3 s at 0.5 or 50% RH, and in 0.25 s at 0.2 or 20% RH. The droplet temperature decreases rapidly from human body temperature to room temperature, which may affect the viability of any carried virus.

Journal

Building and EnvironmentElsevier

Published: Oct 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off