Modeling of heterogeneous Fenton process for dye degradation in a fluidized-bed reactor: Kinetics and mass transfer

Modeling of heterogeneous Fenton process for dye degradation in a fluidized-bed reactor: Kinetics... Natural pyrite catalysts were utilized in fluidized bed reactor for dye degradation in presence of hydrogen peroxide, which is famous to heterogeneous Fenton reaction. This process plays an important role in wastewater treatment processes and it is more effective when occurs in this kind of reactors. A novel kinetic model for Acid yellow 36 (AY36) degradation by heterogeneous Fenton process, in a fluidized bed reactor has been developed. By evaluating dissolved oxygen (DO) concentration in effluent during the process, a new parameter named effective reaction time is introduced, which could describe the relation of DO concentration and dye degradation, so the prediction of DO concentration by the model is of great importance toward the understanding of process performance. Neglecting mass transfer phenomenon from kinetic models eventuated in incorrect estimation, consequently, in this model, both reaction and mass transfer mechanism have been considered, which forecast the changes in effective factors like pH, DO concentration and dye removal efficiency simultaneously. The model results adequately coincide with the experimental results, which declare the validity of the modified kinetic model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Modeling of heterogeneous Fenton process for dye degradation in a fluidized-bed reactor: Kinetics and mass transfer

Loading next page...
 
/lp/elsevier/modeling-of-heterogeneous-fenton-process-for-dye-degradation-in-a-L0SqHRVvBp
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.01.225
Publisher site
See Article on Publisher Site

Abstract

Natural pyrite catalysts were utilized in fluidized bed reactor for dye degradation in presence of hydrogen peroxide, which is famous to heterogeneous Fenton reaction. This process plays an important role in wastewater treatment processes and it is more effective when occurs in this kind of reactors. A novel kinetic model for Acid yellow 36 (AY36) degradation by heterogeneous Fenton process, in a fluidized bed reactor has been developed. By evaluating dissolved oxygen (DO) concentration in effluent during the process, a new parameter named effective reaction time is introduced, which could describe the relation of DO concentration and dye degradation, so the prediction of DO concentration by the model is of great importance toward the understanding of process performance. Neglecting mass transfer phenomenon from kinetic models eventuated in incorrect estimation, consequently, in this model, both reaction and mass transfer mechanism have been considered, which forecast the changes in effective factors like pH, DO concentration and dye removal efficiency simultaneously. The model results adequately coincide with the experimental results, which declare the validity of the modified kinetic model.

Journal

Journal of Cleaner ProductionElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off