Modeling for CFRP structures subjected to quasi-static crushing

Modeling for CFRP structures subjected to quasi-static crushing Carbon fiber reinforced plastic (CFRP) composite materials demonstrate significant promise to further improve weight to performance in automotive engineering. Nevertheless, design of CFRP components for crashworthiness criteria remains rather challenging and typically requires laborious trial-and-error processes. This study aims to promote computational design of CFRP structures by establishing effective constitutive model that is implemented in the commercial finite element code Abaqus/Explicit. Two different numerical models (namely, the single layer shell model and the stacked shell model) were developed to simulate experimental crushing tests on the square CFRP tube. The effects of key parameters for these two FE models were analyzed, respectively. The comparisons of numerical results with experimental data indicated that the 9 layers stacked shell model is capable of reproducing experimental results with relatively higher accuracy. Based on the validated modeling approach, crushing behaviors of several CFRP thin-walled structures with different cross sectional geometries and thicknesses were further explored. The failure modes and key indicators in relation to the structural crashworthiness were investigated for identifying a best possible sectional configuration. It is found that the circular tube shows superior specific energy absorption capacity of all different tubal configurations with the same wall thickness, meaning that the tube with circular section is of good potential asa crashworthy CFRP structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Modeling for CFRP structures subjected to quasi-static crushing

Loading next page...
 
/lp/elsevier/modeling-for-cfrp-structures-subjected-to-quasi-static-crushing-SEapk0G0Dp
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.09.001
Publisher site
See Article on Publisher Site

Abstract

Carbon fiber reinforced plastic (CFRP) composite materials demonstrate significant promise to further improve weight to performance in automotive engineering. Nevertheless, design of CFRP components for crashworthiness criteria remains rather challenging and typically requires laborious trial-and-error processes. This study aims to promote computational design of CFRP structures by establishing effective constitutive model that is implemented in the commercial finite element code Abaqus/Explicit. Two different numerical models (namely, the single layer shell model and the stacked shell model) were developed to simulate experimental crushing tests on the square CFRP tube. The effects of key parameters for these two FE models were analyzed, respectively. The comparisons of numerical results with experimental data indicated that the 9 layers stacked shell model is capable of reproducing experimental results with relatively higher accuracy. Based on the validated modeling approach, crushing behaviors of several CFRP thin-walled structures with different cross sectional geometries and thicknesses were further explored. The failure modes and key indicators in relation to the structural crashworthiness were investigated for identifying a best possible sectional configuration. It is found that the circular tube shows superior specific energy absorption capacity of all different tubal configurations with the same wall thickness, meaning that the tube with circular section is of good potential asa crashworthy CFRP structure.

Journal

Composite StructuresElsevier

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off