Modeling CO 2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales

Modeling CO 2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal... Fluxes of carbon dioxide, water and energy between a temperate deciduous forest and the atmosphere were quantified across time scales of hours, days, seasons, years and decades. This exercise was performed using stand-level eddy covariance flux measurements and a biophysical model, CANOAK. The CANOAK model was tested with measurements of carbon dioxide, water vapor and energy flux densities we have been collecting since October 1994. Model calculations reproduced 80% of CO 2 and water vapor flux variance that are contained in a year-long time series, when the model was forced with hourly weather data and seasonal information on plant structure and physiological capacity. Spectral analysis of measured and computed time series revealed that peak time scales of flux variance have periods of a day, half-week, season and year. We examined questions relating to inter-annual variability of mass and energy exchange by forcing the validated model with a decade-long meteorological record. Theoretical estimates of year-to-year variability of net ecosystem CO 2 exchange were on the order of ±200 gC m −2 year. We also deduced that significant variance of water vapor and CO 2 exchange occurs on the time scale of 5–6 years, the time scale associated with El Nino phenomena. Sensitivity tests performed with the model examined issues associated with model complex and parameterization issues. Of particular importance were the effects of leaf clumping and length of the growing season on canopy photosynthesis and net ecosystem CO 2 exchange. Ignoring the effects of leaf clumping caused an error as large as 50% in the estimation of annual biosphere–atmosphere net carbon exchange. Each incremental day change in the length of the growing season altered the net ecosystem CO 2 exchange by 5.9 gC m −2 . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Modelling Elsevier

Modeling CO 2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales

Ecological Modelling, Volume 142 (1) – Aug 1, 2001

Loading next page...
 
/lp/elsevier/modeling-co-2-and-water-vapor-exchange-of-a-temperate-broadleaved-7wreHcwkm2
Publisher
Elsevier
Copyright
Copyright © 2001 Elsevier Science B.V.
ISSN
0304-3800
eISSN
1872-7026
D.O.I.
10.1016/S0304-3800(01)00287-3
Publisher site
See Article on Publisher Site

Abstract

Fluxes of carbon dioxide, water and energy between a temperate deciduous forest and the atmosphere were quantified across time scales of hours, days, seasons, years and decades. This exercise was performed using stand-level eddy covariance flux measurements and a biophysical model, CANOAK. The CANOAK model was tested with measurements of carbon dioxide, water vapor and energy flux densities we have been collecting since October 1994. Model calculations reproduced 80% of CO 2 and water vapor flux variance that are contained in a year-long time series, when the model was forced with hourly weather data and seasonal information on plant structure and physiological capacity. Spectral analysis of measured and computed time series revealed that peak time scales of flux variance have periods of a day, half-week, season and year. We examined questions relating to inter-annual variability of mass and energy exchange by forcing the validated model with a decade-long meteorological record. Theoretical estimates of year-to-year variability of net ecosystem CO 2 exchange were on the order of ±200 gC m −2 year. We also deduced that significant variance of water vapor and CO 2 exchange occurs on the time scale of 5–6 years, the time scale associated with El Nino phenomena. Sensitivity tests performed with the model examined issues associated with model complex and parameterization issues. Of particular importance were the effects of leaf clumping and length of the growing season on canopy photosynthesis and net ecosystem CO 2 exchange. Ignoring the effects of leaf clumping caused an error as large as 50% in the estimation of annual biosphere–atmosphere net carbon exchange. Each incremental day change in the length of the growing season altered the net ecosystem CO 2 exchange by 5.9 gC m −2 .

Journal

Ecological ModellingElsevier

Published: Aug 1, 2001

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off