Modeling and simulation of co-gasification of coal and petcoke in a bubbling fluidized bed coal gasifier

Modeling and simulation of co-gasification of coal and petcoke in a bubbling fluidized bed coal... In this work we discuss the modeling and simulation of a fluidized bed coal gasifier which uses a mixture of coal and petcoke as its feed. A two phase model consisting of the bubble phase and the emulsion phase is used to describe the coal gasification process. We consider a non-isothermal model taking into account the effect of four heterogeneous reactions and four homogeneous reactions. We analyse the effect of various operating parameters such as composition of feed, location of feed point and ash content on the performance of the gasifier. The results of predictions of the simulations have been found to be in good agreement with the experimental results in the literature. It has been found that increase in petcoke content in the feed mixture tends to lower the efficiency and carbon conversion but increases the amount of syngas produced. Also, from the simulations, it has been found that increase in ash content of coal decreases the carbon conversion. We have concluded that the feed point of the solids should be above the point where O 2 that is present in the bed gets exhausted, in order to obtain the maximum carbon conversion and efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fuel Processing Technology Elsevier

Modeling and simulation of co-gasification of coal and petcoke in a bubbling fluidized bed coal gasifier

Loading next page...
 
/lp/elsevier/modeling-and-simulation-of-co-gasification-of-coal-and-petcoke-in-a-Hj2XOxcx6k
Publisher
Elsevier
Copyright
Copyright © 2010 Elsevier B.V.
ISSN
0378-3820
D.O.I.
10.1016/j.fuproc.2010.04.012
Publisher site
See Article on Publisher Site

Abstract

In this work we discuss the modeling and simulation of a fluidized bed coal gasifier which uses a mixture of coal and petcoke as its feed. A two phase model consisting of the bubble phase and the emulsion phase is used to describe the coal gasification process. We consider a non-isothermal model taking into account the effect of four heterogeneous reactions and four homogeneous reactions. We analyse the effect of various operating parameters such as composition of feed, location of feed point and ash content on the performance of the gasifier. The results of predictions of the simulations have been found to be in good agreement with the experimental results in the literature. It has been found that increase in petcoke content in the feed mixture tends to lower the efficiency and carbon conversion but increases the amount of syngas produced. Also, from the simulations, it has been found that increase in ash content of coal decreases the carbon conversion. We have concluded that the feed point of the solids should be above the point where O 2 that is present in the bed gets exhausted, in order to obtain the maximum carbon conversion and efficiency.

Journal

Fuel Processing TechnologyElsevier

Published: Oct 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off