Model results versus farmer realities. Operationalizing diversity within and among smallholder farm systems for a nuanced impact assessment of technology packages

Model results versus farmer realities. Operationalizing diversity within and among smallholder... Agricultural production in Northern Ghana is dominated by smallholder farm systems, which are characterized by low inputs and low outputs, declining soil fertility, large yield gaps and limited adoption of agricultural technologies. There is an urgent need for alternative farm designs that are more productive, yet more sustainable. Technology packages for sustainable intensification are promoted by an R4D project in the Upper East, Upper West and Northern Regions of Ghana. In this paper, we analyse differences in perceived suitability, and modelled technical impact per technology package.We used a locally validated framework to categorise farm systems diversity that considers both, the horizontal (between households) and vertical (within households) dimension of diversity. Farm households were classified along a gradient of resource endowment. We selected one representative farm per type and per region to assess and compare their socio-economic and environmental performance (farm profitability, labour and soil organic matter inputs) using the whole-farm model Farm DESIGN. We then used Farm DESIGN to assess the potential impact of five proposed technology packages and to explore promising alternative farm configurations. We discussed model assumptions and results with farmers, including alternative cropping patterns and trade-offs. We evaluated the packages with different household members using a weighted scoring technique, subsequently juxtaposing model results with farmer perceptions.Large differences prevailed among and within farms per type and per region, with low resource endowed farms being projected to benefit most in relative and least in absolute terms from an adoption of the packages. Farmer feedback confirmed the accuracy of alternative farm configurations, as determined by the model. However, the feedback also revealed that the most profitable farm designs would be hard to attain in reality, particularly for members of low and medium resource endowed households, due to high initial investment costs. Within households, women were more positive about the packages than men, since men heavily penalized extra costs and labour, translating into a greater congruence of model results with the male evaluation. We discuss the importance of distinguishing between technical (technology i.e. purchased tools and inputs) and managerial (techniques e.g. row planting) package components. We conclude that operationalizing inter- and intra-household diversity is a fundamental step in identifying sensible solutions for the challenges smallholder farm systems face in Northern Ghana. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agricultural Systems Elsevier

Model results versus farmer realities. Operationalizing diversity within and among smallholder farm systems for a nuanced impact assessment of technology packages

Loading next page...
 
/lp/elsevier/model-results-versus-farmer-realities-operationalizing-diversity-hh98qaLrod
Publisher
Elsevier
Copyright
Copyright © 2018 The Authors
ISSN
0308-521x
D.O.I.
10.1016/j.agsy.2018.01.028
Publisher site
See Article on Publisher Site

Abstract

Agricultural production in Northern Ghana is dominated by smallholder farm systems, which are characterized by low inputs and low outputs, declining soil fertility, large yield gaps and limited adoption of agricultural technologies. There is an urgent need for alternative farm designs that are more productive, yet more sustainable. Technology packages for sustainable intensification are promoted by an R4D project in the Upper East, Upper West and Northern Regions of Ghana. In this paper, we analyse differences in perceived suitability, and modelled technical impact per technology package.We used a locally validated framework to categorise farm systems diversity that considers both, the horizontal (between households) and vertical (within households) dimension of diversity. Farm households were classified along a gradient of resource endowment. We selected one representative farm per type and per region to assess and compare their socio-economic and environmental performance (farm profitability, labour and soil organic matter inputs) using the whole-farm model Farm DESIGN. We then used Farm DESIGN to assess the potential impact of five proposed technology packages and to explore promising alternative farm configurations. We discussed model assumptions and results with farmers, including alternative cropping patterns and trade-offs. We evaluated the packages with different household members using a weighted scoring technique, subsequently juxtaposing model results with farmer perceptions.Large differences prevailed among and within farms per type and per region, with low resource endowed farms being projected to benefit most in relative and least in absolute terms from an adoption of the packages. Farmer feedback confirmed the accuracy of alternative farm configurations, as determined by the model. However, the feedback also revealed that the most profitable farm designs would be hard to attain in reality, particularly for members of low and medium resource endowed households, due to high initial investment costs. Within households, women were more positive about the packages than men, since men heavily penalized extra costs and labour, translating into a greater congruence of model results with the male evaluation. We discuss the importance of distinguishing between technical (technology i.e. purchased tools and inputs) and managerial (techniques e.g. row planting) package components. We conclude that operationalizing inter- and intra-household diversity is a fundamental step in identifying sensible solutions for the challenges smallholder farm systems face in Northern Ghana.

Journal

Agricultural SystemsElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off