Model-guided suggestions for targeted surveillance based on cattle shipments in the U.S.

Model-guided suggestions for targeted surveillance based on cattle shipments in the U.S. Risk-based sampling is an essential component of livestock health surveillance because it targets resources towards sub-populations with a higher risk of infection. Risk-based surveillance in U.S. livestock is limited because the locations of high-risk herds are often unknown and data to identify high-risk herds based on shipments are often unavailable. In this study, we use a novel, data-driven network model for the shipments of cattle in the U.S. (the U.S. Animal Movement Model, USAMM) to provide surveillance suggestions for cattle imported into the U.S. from Mexico. We describe the volume and locations where cattle are imported and analyze their predicted shipment patterns to identify counties that are most likely to receive shipments of imported cattle. Our results suggest that most imported cattle are sent to relatively few counties. Surveillance at 10 counties is predicted to sample 22–34% of imported cattle while surveillance at 50 counties is predicted to sample 43%–61% of imported cattle. These findings are based on the assumption that USAMM accurately describes the shipments of imported cattle because their shipments are not tracked separately from the remainder of the U.S. herd. However, we analyze two additional datasets – Interstate Certificates of Veterinary Inspection and brand inspection data – to ensure that the characteristics of potential post-import shipments do not change on an annual scale and are not dependent on the dataset informing our analyses. Overall, these results highlight the utility of USAMM to inform targeted surveillance strategies when complete shipment information is unavailable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Preventive Veterinary Medicine Elsevier

Model-guided suggestions for targeted surveillance based on cattle shipments in the U.S.

Loading next page...
 
/lp/elsevier/model-guided-suggestions-for-targeted-surveillance-based-on-cattle-VAoXgO5Ra0
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0167-5877
eISSN
1873-1716
D.O.I.
10.1016/j.prevetmed.2017.12.004
Publisher site
See Article on Publisher Site

Abstract

Risk-based sampling is an essential component of livestock health surveillance because it targets resources towards sub-populations with a higher risk of infection. Risk-based surveillance in U.S. livestock is limited because the locations of high-risk herds are often unknown and data to identify high-risk herds based on shipments are often unavailable. In this study, we use a novel, data-driven network model for the shipments of cattle in the U.S. (the U.S. Animal Movement Model, USAMM) to provide surveillance suggestions for cattle imported into the U.S. from Mexico. We describe the volume and locations where cattle are imported and analyze their predicted shipment patterns to identify counties that are most likely to receive shipments of imported cattle. Our results suggest that most imported cattle are sent to relatively few counties. Surveillance at 10 counties is predicted to sample 22–34% of imported cattle while surveillance at 50 counties is predicted to sample 43%–61% of imported cattle. These findings are based on the assumption that USAMM accurately describes the shipments of imported cattle because their shipments are not tracked separately from the remainder of the U.S. herd. However, we analyze two additional datasets – Interstate Certificates of Veterinary Inspection and brand inspection data – to ensure that the characteristics of potential post-import shipments do not change on an annual scale and are not dependent on the dataset informing our analyses. Overall, these results highlight the utility of USAMM to inform targeted surveillance strategies when complete shipment information is unavailable.

Journal

Preventive Veterinary MedicineElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off