Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns

Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns We apply a range of out-of-sample specification tests to more than forty competing stochastic volatility models to address how model complexity affects out-of-sample performance. Using daily S&P 500 index returns, model confidence set estimations provide strong evidence that the most important model feature is the non-affinity of the variance process. Despite testing alternative specifications during the turbulent market regime of the global financial crisis of 2008, we find no evidence that either finite- or infinite-activity jump models or other previously proposed model extensions improve the out-of-sample performance further. Applications to Value-at-Risk demonstrate the economic significance of our results. Furthermore, the out-of-sample results suggest that standard jump diffusion models are misspecified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Economic Dynamics and Control Elsevier

Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns

Loading next page...
 
/lp/elsevier/model-complexity-and-out-of-sample-performance-evidence-from-s-p-500-i8sYbl0HZR
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0165-1889
eISSN
1879-1743
D.O.I.
10.1016/j.jedc.2018.01.040
Publisher site
See Article on Publisher Site

Abstract

We apply a range of out-of-sample specification tests to more than forty competing stochastic volatility models to address how model complexity affects out-of-sample performance. Using daily S&P 500 index returns, model confidence set estimations provide strong evidence that the most important model feature is the non-affinity of the variance process. Despite testing alternative specifications during the turbulent market regime of the global financial crisis of 2008, we find no evidence that either finite- or infinite-activity jump models or other previously proposed model extensions improve the out-of-sample performance further. Applications to Value-at-Risk demonstrate the economic significance of our results. Furthermore, the out-of-sample results suggest that standard jump diffusion models are misspecified.

Journal

Journal of Economic Dynamics and ControlElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off