Mitigation measures to minimize the cradle-to-grave beer carbon footprint as related to the brewery size and primary packaging materials

Mitigation measures to minimize the cradle-to-grave beer carbon footprint as related to the... Brewing is quite an energy-intensive process, and its environmental impact has been the object of several life cycle assessment (LCA) studies. In this work, the potentialities of a series of options directed to mitigate the main hotspots of the beer life cycle were evaluated to minimize the cradle-to grave carbon footprint (CFC2G) of 1 hL of beer produced in three large- (LS), medium-(MS) and small-(SS) sized breweries and packed in 66-cL glass or polyethylene terephthalate (PET) bottles by using a previously developed LCA model. As the annual brewery capacity reduced from 3 × 106 to 600 hL/yr, the estimated CFC2G scores increased from ∼127 to 192, or 103–169 kg CO2e hL−1 for glass or PET bottles, respectively. Their main hotspots depended on the primary packaging material used, even in the case of PET bottles for the large-sized brewery only. By replacing progressively virgin materials with 100%-recycled glass or PET bottles, road transport with rail one, barley grown abroad using conventional agriculture methods with local organic one, fossil fuel energy with solar photovoltaic one, etc., CFC2G declined to 56–60, or 80 kg CO2e hL−1 in the case of LS and MS, or SS breweries, respectively, independently of the primary packaging material used. Such an approach appeared to be useful to identify how to reduce effectively CFC2G, as well as to decide to invest on the collection of selected primary data or assessment of other environmental impact categories to avoid burden shifting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

Mitigation measures to minimize the cradle-to-grave beer carbon footprint as related to the brewery size and primary packaging materials

Loading next page...
 
/lp/elsevier/mitigation-measures-to-minimize-the-cradle-to-grave-beer-carbon-Z2QPcjeO0k
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2018.05.001
Publisher site
See Article on Publisher Site

Abstract

Brewing is quite an energy-intensive process, and its environmental impact has been the object of several life cycle assessment (LCA) studies. In this work, the potentialities of a series of options directed to mitigate the main hotspots of the beer life cycle were evaluated to minimize the cradle-to grave carbon footprint (CFC2G) of 1 hL of beer produced in three large- (LS), medium-(MS) and small-(SS) sized breweries and packed in 66-cL glass or polyethylene terephthalate (PET) bottles by using a previously developed LCA model. As the annual brewery capacity reduced from 3 × 106 to 600 hL/yr, the estimated CFC2G scores increased from ∼127 to 192, or 103–169 kg CO2e hL−1 for glass or PET bottles, respectively. Their main hotspots depended on the primary packaging material used, even in the case of PET bottles for the large-sized brewery only. By replacing progressively virgin materials with 100%-recycled glass or PET bottles, road transport with rail one, barley grown abroad using conventional agriculture methods with local organic one, fossil fuel energy with solar photovoltaic one, etc., CFC2G declined to 56–60, or 80 kg CO2e hL−1 in the case of LS and MS, or SS breweries, respectively, independently of the primary packaging material used. Such an approach appeared to be useful to identify how to reduce effectively CFC2G, as well as to decide to invest on the collection of selected primary data or assessment of other environmental impact categories to avoid burden shifting.

Journal

Journal of Food EngineeringElsevier

Published: Nov 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off