Mirabilite solubility in equilibrium sea ice brines

Mirabilite solubility in equilibrium sea ice brines The sea ice microstructure is permeated by brine channels and pockets that contain concentrated seawater-derived brine. Cooling the sea ice results in further formation of pure ice within these pockets as thermal equilibrium is attained, resulting in a smaller volume of increasingly concentrated residual brine. The coupled changes in temperature and ionic composition result in supersaturation of the brine with respect to mirabilite (Na2SO4·10H2O) at temperatures below −6.38°C, which consequently precipitates within the sea ice microstructure. Here, mirabilite solubility in natural and synthetic seawater derived brines, representative of sea ice at thermal equilibrium, has been measured in laboratory experiments between 0.2 and −20.6°C, and hence we present a detailed examination of mirabilite dynamics within the sea ice system. Below −6.38°C mirabilite displays particularly large changes in solubility as the temperature decreases, and by −20.6°C its precipitation results in 12.90% and 91.97% reductions in the total dissolved Na+ and SO42− concentrations respectively, compared to that of conservative seawater concentration. Such large non-conservative changes in brine composition could potentially impact upon the measurement of sea ice brine salinity and pH, whilst the altered osmotic conditions may create additional challenges for the sympagic organisms that inhabit the sea ice system. At temperatures above −6.38°C, mirabilite again displays large changes in solubility that likely aid in impeding its identification in field samples of sea ice. Our solubility measurements display excellent agreement with that of the FREZCHEM model, which was therefore used to supplement our measurements to colder temperatures. Measured and modelled solubility data were incorporated into a 1D model for the growth of first-year Arctic sea ice. Model results ultimately suggest that mirabilite has a near ubiquitous presence in much of the sea ice on Earth, and illustrate the spatial and temporal evolution of mirabilite within sea ice as it grows throughout an Arctic winter, reaching maximum concentrations of 2.3gkg−1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geochimica et Cosmochimica Acta Elsevier

Mirabilite solubility in equilibrium sea ice brines

Loading next page...
 
/lp/elsevier/mirabilite-solubility-in-equilibrium-sea-ice-brines-iWoIqBkyWP
Publisher
Elsevier
Copyright
Copyright © 2016 The Authors
ISSN
0016-7037
eISSN
1872-9533
D.O.I.
10.1016/j.gca.2016.03.008
Publisher site
See Article on Publisher Site

Abstract

The sea ice microstructure is permeated by brine channels and pockets that contain concentrated seawater-derived brine. Cooling the sea ice results in further formation of pure ice within these pockets as thermal equilibrium is attained, resulting in a smaller volume of increasingly concentrated residual brine. The coupled changes in temperature and ionic composition result in supersaturation of the brine with respect to mirabilite (Na2SO4·10H2O) at temperatures below −6.38°C, which consequently precipitates within the sea ice microstructure. Here, mirabilite solubility in natural and synthetic seawater derived brines, representative of sea ice at thermal equilibrium, has been measured in laboratory experiments between 0.2 and −20.6°C, and hence we present a detailed examination of mirabilite dynamics within the sea ice system. Below −6.38°C mirabilite displays particularly large changes in solubility as the temperature decreases, and by −20.6°C its precipitation results in 12.90% and 91.97% reductions in the total dissolved Na+ and SO42− concentrations respectively, compared to that of conservative seawater concentration. Such large non-conservative changes in brine composition could potentially impact upon the measurement of sea ice brine salinity and pH, whilst the altered osmotic conditions may create additional challenges for the sympagic organisms that inhabit the sea ice system. At temperatures above −6.38°C, mirabilite again displays large changes in solubility that likely aid in impeding its identification in field samples of sea ice. Our solubility measurements display excellent agreement with that of the FREZCHEM model, which was therefore used to supplement our measurements to colder temperatures. Measured and modelled solubility data were incorporated into a 1D model for the growth of first-year Arctic sea ice. Model results ultimately suggest that mirabilite has a near ubiquitous presence in much of the sea ice on Earth, and illustrate the spatial and temporal evolution of mirabilite within sea ice as it grows throughout an Arctic winter, reaching maximum concentrations of 2.3gkg−1.

Journal

Geochimica et Cosmochimica ActaElsevier

Published: Jun 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off