Mimicking shear zones: An example from Wadi Filk, Jordan

Mimicking shear zones: An example from Wadi Filk, Jordan Ductile shear zones can develop in at least two ways: (1) a nucleus can grow laterally by free propagation into undeformed host rock, like most faults or joints; (2) the zone may nucleate and grow on or in a planar discontinuity and mimick its orientation. Most small-scale ductile shear zones are mimicking zones, but large-scale ductile shear zones could be free-propagating. The Wadi Filk mylonite zone in Jordan is a two km long, ten meter wide mylonite zone flanked by ultramylonite zones, developed in undeformed Neoproterozoic porphyritic monzogranite. Since mineral and major element composition of mylonite and monzogranite are identical, the structure seems to have formed by free propagation. Only detailed observations of the microstructure and trace element chemistry of the mylonite indicate that it is mimicking a precursor rhyolitic dyke. The Wadi Filk mylonite zone shows that even km-scale ductile shear zones can be mimicking dykes. Fine-grained chilled margins of dykes can act as a nucleus of ultramylonite formation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Geology Elsevier

Mimicking shear zones: An example from Wadi Filk, Jordan

Loading next page...
 
/lp/elsevier/mimicking-shear-zones-an-example-from-wadi-filk-jordan-KRKIqZF0Y4
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0191-8141
eISSN
1873-1201
D.O.I.
10.1016/j.jsg.2017.03.010
Publisher site
See Article on Publisher Site

Abstract

Ductile shear zones can develop in at least two ways: (1) a nucleus can grow laterally by free propagation into undeformed host rock, like most faults or joints; (2) the zone may nucleate and grow on or in a planar discontinuity and mimick its orientation. Most small-scale ductile shear zones are mimicking zones, but large-scale ductile shear zones could be free-propagating. The Wadi Filk mylonite zone in Jordan is a two km long, ten meter wide mylonite zone flanked by ultramylonite zones, developed in undeformed Neoproterozoic porphyritic monzogranite. Since mineral and major element composition of mylonite and monzogranite are identical, the structure seems to have formed by free propagation. Only detailed observations of the microstructure and trace element chemistry of the mylonite indicate that it is mimicking a precursor rhyolitic dyke. The Wadi Filk mylonite zone shows that even km-scale ductile shear zones can be mimicking dykes. Fine-grained chilled margins of dykes can act as a nucleus of ultramylonite formation.

Journal

Journal of Structural GeologyElsevier

Published: May 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off