Micropolar modeling approach for periodic sandwich beams

Micropolar modeling approach for periodic sandwich beams A micropolar Timoshenko beam formulation is developed and used to model web-core sandwich beams. The beam theory is derived by a vector approach and the general solution to the governing sixth-order equations is given. A nodally-exact micropolar Timoshenko beam finite element is derived using the solution. Bending and shear stiffness coefficients for a web-core sandwich beam are determined through unit cell analysis, where the split of the shear forces into symmetric and antisymmetric parts plays a pivotal role. Static bending of web-core beams is studied using the micropolar model as well as modified couple-stress and classical Timoshenko beam models. The micropolar 1-D results are in best agreement with 2-D web-core beam frame results. This is because the micropolar beam allows antisymmetric shear deformation to emerge at locations where the 2-D web-core deformations cannot be reduced to 1-D by considering only symmetric shear behavior. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Micropolar modeling approach for periodic sandwich beams

Loading next page...
 
/lp/elsevier/micropolar-modeling-approach-for-periodic-sandwich-beams-XqlBhjSIey
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.11.064
Publisher site
See Article on Publisher Site

Abstract

A micropolar Timoshenko beam formulation is developed and used to model web-core sandwich beams. The beam theory is derived by a vector approach and the general solution to the governing sixth-order equations is given. A nodally-exact micropolar Timoshenko beam finite element is derived using the solution. Bending and shear stiffness coefficients for a web-core sandwich beam are determined through unit cell analysis, where the split of the shear forces into symmetric and antisymmetric parts plays a pivotal role. Static bending of web-core beams is studied using the micropolar model as well as modified couple-stress and classical Timoshenko beam models. The micropolar 1-D results are in best agreement with 2-D web-core beam frame results. This is because the micropolar beam allows antisymmetric shear deformation to emerge at locations where the 2-D web-core deformations cannot be reduced to 1-D by considering only symmetric shear behavior.

Journal

Composite StructuresElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off