Microplastics in the sediments of a UK urban lake

Microplastics in the sediments of a UK urban lake While studies on microplastics in the marine environment show their wide-distribution, persistence and contamination of biota, the freshwater environment remains comparatively neglected. Where studies on freshwaters have been undertaken these have been on riverine systems or very large lakes. We present data on the distribution of microplastic particles in the sediments of Edgbaston Pool, a shallow eutrophic lake in central Birmingham, UK. These data provide, to our knowledge, the first assessment of microplastic concentrations in the sediments of either a small or an urban lake and the first for any lake in the UK. Maximum concentrations reached 25–30 particles per 100 g dried sediment (equivalent to low hundreds kg−1) and hence are comparable with reported river sediment studies. Fibres and films were the most common types of microplastic observed. Spatial distributions appear to be due to similar factors to other lake studies (i.e. location of inflow; prevailing wind directions; propensity for biofouling; distribution of macroplastic debris) and add to the growing burden of evidence for microplastic ubiquity in all environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Microplastics in the sediments of a UK urban lake

Loading next page...
 
/lp/elsevier/microplastics-in-the-sediments-of-a-uk-urban-lake-eiUDezeH0X
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.05.057
Publisher site
See Article on Publisher Site

Abstract

While studies on microplastics in the marine environment show their wide-distribution, persistence and contamination of biota, the freshwater environment remains comparatively neglected. Where studies on freshwaters have been undertaken these have been on riverine systems or very large lakes. We present data on the distribution of microplastic particles in the sediments of Edgbaston Pool, a shallow eutrophic lake in central Birmingham, UK. These data provide, to our knowledge, the first assessment of microplastic concentrations in the sediments of either a small or an urban lake and the first for any lake in the UK. Maximum concentrations reached 25–30 particles per 100 g dried sediment (equivalent to low hundreds kg−1) and hence are comparable with reported river sediment studies. Fibres and films were the most common types of microplastic observed. Spatial distributions appear to be due to similar factors to other lake studies (i.e. location of inflow; prevailing wind directions; propensity for biofouling; distribution of macroplastic debris) and add to the growing burden of evidence for microplastic ubiquity in all environments.

Journal

Environmental PollutionElsevier

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off