Microfibrillated cellulose addition improved the physicochemical and bioactive properties of biodegradable films based on soy protein and clove essential oil

Microfibrillated cellulose addition improved the physicochemical and bioactive properties of... Active nanocomposite films based on soy protein isolates (SPI), microfibrillated cellulose (MFC) and clove essential oil (CEO) were developed, and the contribution of each component to the functionality of ensuing films was intended to elucidate. MFC with diameters of 50–60 nm, an average length of 485 ± 2 μm, a high aspect ratio of 8800 and 35.5% of cristalinity, was prepared from Phormium tenax fibers by mechanical treatment. Films were processed by casting from aqueous dispersions containing SPI, glycerol (as plasticizer), different MFC contents and the optional addition of CEO. All filmogenic dispersions exhibited a pseudoplastic flow behavior and formed homogeneous films. The addition of MFC reinforced the protein matrix, increasing the mechanical strength and Young's modulus of the films and improving their barrier properties to water vapor and oxygen. On the other hand, the addition of CEO caused some plastification effect of protein and nanocomposite matrix (mainly observed in the mechanical properties, solubility and water content) and a differential modification in the barrier properties, as the oxygen permeability increased and WVP decreased. Furthermore, it conferred important antioxidant properties and antimicrobial activity against bacteria related to foodborne diseases that increased with increasing MFC content in the formulation. Nanofibers seemed to favor the release of the active compounds of CEO probably due to the improved dispersion of CEO in nanocomposites through a higher amount of smaller droplets. These active nanocomposite films with antimicrobial and antioxidant properties are promising for the development of active food packaging. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Hydrocolloids Elsevier

Microfibrillated cellulose addition improved the physicochemical and bioactive properties of biodegradable films based on soy protein and clove essential oil

Loading next page...
 
/lp/elsevier/microfibrillated-cellulose-addition-improved-the-physicochemical-and-v7YgEPqPFB
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0268-005X
eISSN
1873-7137
D.O.I.
10.1016/j.foodhyd.2018.01.011
Publisher site
See Article on Publisher Site

Abstract

Active nanocomposite films based on soy protein isolates (SPI), microfibrillated cellulose (MFC) and clove essential oil (CEO) were developed, and the contribution of each component to the functionality of ensuing films was intended to elucidate. MFC with diameters of 50–60 nm, an average length of 485 ± 2 μm, a high aspect ratio of 8800 and 35.5% of cristalinity, was prepared from Phormium tenax fibers by mechanical treatment. Films were processed by casting from aqueous dispersions containing SPI, glycerol (as plasticizer), different MFC contents and the optional addition of CEO. All filmogenic dispersions exhibited a pseudoplastic flow behavior and formed homogeneous films. The addition of MFC reinforced the protein matrix, increasing the mechanical strength and Young's modulus of the films and improving their barrier properties to water vapor and oxygen. On the other hand, the addition of CEO caused some plastification effect of protein and nanocomposite matrix (mainly observed in the mechanical properties, solubility and water content) and a differential modification in the barrier properties, as the oxygen permeability increased and WVP decreased. Furthermore, it conferred important antioxidant properties and antimicrobial activity against bacteria related to foodborne diseases that increased with increasing MFC content in the formulation. Nanofibers seemed to favor the release of the active compounds of CEO probably due to the improved dispersion of CEO in nanocomposites through a higher amount of smaller droplets. These active nanocomposite films with antimicrobial and antioxidant properties are promising for the development of active food packaging.

Journal

Food HydrocolloidsElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off