Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies

Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies This study developed a microbial validation method for radio frequency (RF) pasteurization of low-moisture food powders. Wheat flour with water activity of 0.45 ± 0.02 was used as a model. In this study, heat resistance parameters (D- and z-values) of Salmonella Enteritidis PT 30 (S. Enteritidis) and its potential surrogate Enterococcus faecium NRRL B-2354 (E. faecium) in wheat flour were determined. The results showed that, while both microorganisms yielded the similar z-values, E. faecium was more heat-resistant than S. Enteritidis. For process validation, a 5-g pack of wheat flour inoculated with either microorganism was placed in the geometric center of 3 kg wheat flour and subjected to various processing times of up to 39 min in a 27 MHz RF unit. The inactivation kinetics matched but yielded slightly greater reduction than pasteurization modeled from measured temperature profiles and microbial thermal resistance parameters. This investigation concluded that E. faecium is a valid surrogate for Salmonella in wheat flour. A conservative validation can be obtained by inoculated pack protocol. RF heating technology has potential for pasteurizing wheat flour. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies

Loading next page...
 
/lp/elsevier/microbial-validation-of-radio-frequency-pasteurization-of-wheat-flour-DV1PzvT0X3
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2017.08.013
Publisher site
See Article on Publisher Site

Abstract

This study developed a microbial validation method for radio frequency (RF) pasteurization of low-moisture food powders. Wheat flour with water activity of 0.45 ± 0.02 was used as a model. In this study, heat resistance parameters (D- and z-values) of Salmonella Enteritidis PT 30 (S. Enteritidis) and its potential surrogate Enterococcus faecium NRRL B-2354 (E. faecium) in wheat flour were determined. The results showed that, while both microorganisms yielded the similar z-values, E. faecium was more heat-resistant than S. Enteritidis. For process validation, a 5-g pack of wheat flour inoculated with either microorganism was placed in the geometric center of 3 kg wheat flour and subjected to various processing times of up to 39 min in a 27 MHz RF unit. The inactivation kinetics matched but yielded slightly greater reduction than pasteurization modeled from measured temperature profiles and microbial thermal resistance parameters. This investigation concluded that E. faecium is a valid surrogate for Salmonella in wheat flour. A conservative validation can be obtained by inoculated pack protocol. RF heating technology has potential for pasteurizing wheat flour.

Journal

Journal of Food EngineeringElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off