Microbial performance in soils along a salinity gradient under acidic conditions

Microbial performance in soils along a salinity gradient under acidic conditions The aim of our research was to study how a gradient in salinity under low pH conditions affected activity, community structure, and biomass of soil microorganisms. The study was conducted near Heringen, Germany, at five sites in the floodplain of the river Werra, which were affected by saline liquid residues from potassium mining injected into the underground geological formations. The content of soluble salts ranged from 2.1 at site 1 to 9.7 mg g −1 soil at site 5. Soil pH ranged from 3.85 to 4.55. Microbial biomass C, biomass N, fungal ergosterol and adenosine triphosphate (ATP) were highly significantly interrelated with correlation coefficients between r =0.89 and 0.96 ( P <0.0001, n =25). All soil biological properties except adenosine monophosphate had highest values at the low saline site 1 and lowest at the most acidic and most saline site 5. The strongest decrease with salinity was shown by ATP and ergosterol, achieving only 12 and 4% of the site 1 values, respectively. The ATP-to-microbial biomass C ratio declined to 46% of the maximum level at site 1, the microbial biomass C-to-soil organic C ratio to 38%, and the ergosterol-to-microbial biomass C ratio to 19%. All microbial indices, except basal respiration, exhibited strong salinity effects due to shifts in the microbial community structure towards prokaryotic microorganisms. Consequently, salinity is one of the most stressing environmental conditions for soil microorganisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Soil Ecology Elsevier

Microbial performance in soils along a salinity gradient under acidic conditions

Loading next page...
 
/lp/elsevier/microbial-performance-in-soils-along-a-salinity-gradient-under-acidic-0Ly0QzjI6x
Publisher
Elsevier
Copyright
Copyright © 2003 Elsevier Science B.V.
ISSN
0929-1393
D.O.I.
10.1016/S0929-1393(03)00027-1
Publisher site
See Article on Publisher Site

Abstract

The aim of our research was to study how a gradient in salinity under low pH conditions affected activity, community structure, and biomass of soil microorganisms. The study was conducted near Heringen, Germany, at five sites in the floodplain of the river Werra, which were affected by saline liquid residues from potassium mining injected into the underground geological formations. The content of soluble salts ranged from 2.1 at site 1 to 9.7 mg g −1 soil at site 5. Soil pH ranged from 3.85 to 4.55. Microbial biomass C, biomass N, fungal ergosterol and adenosine triphosphate (ATP) were highly significantly interrelated with correlation coefficients between r =0.89 and 0.96 ( P <0.0001, n =25). All soil biological properties except adenosine monophosphate had highest values at the low saline site 1 and lowest at the most acidic and most saline site 5. The strongest decrease with salinity was shown by ATP and ergosterol, achieving only 12 and 4% of the site 1 values, respectively. The ATP-to-microbial biomass C ratio declined to 46% of the maximum level at site 1, the microbial biomass C-to-soil organic C ratio to 38%, and the ergosterol-to-microbial biomass C ratio to 19%. All microbial indices, except basal respiration, exhibited strong salinity effects due to shifts in the microbial community structure towards prokaryotic microorganisms. Consequently, salinity is one of the most stressing environmental conditions for soil microorganisms.

Journal

Applied Soil EcologyElsevier

Published: Jul 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off