Micro/macro-stress relationship and local stress distribution in polyethylene spherulites upon uniaxial stretching in the small strain domain

Micro/macro-stress relationship and local stress distribution in polyethylene spherulites upon... Local stress of polyethylene spherulites under uniaxial stretching in small strain domain has been investigated by in-situ wide angle X-ray diffraction (WAXD) in comparison with macroscopic stress. Particular attention is paid to the elastic strain range. The local stress in equatorial and polar regions both increase in absolute value and follow a linear relation versus macroscopic stress. However, local stress turns out to be heterogeneous over the whole spherulites volume. The polar region shows higher local stress than equatorial region. Moreover, local stress along the a and b crystallographic axes in the crystalline lamellae enable determining the local stress triaxiality which is heterogenous. The increase of crystallinity promotes stress distribution heterogeneity throughout the spherulites. The origin of these phenomenon are discussed in terms of crystalline network percolation and effect of amorphous layer that modifies the local mechanical behavior. The present study provides a useful means for achieving the scale transition between the micro and the macro structural levels that is necessary for the modeling of the mechanical behavior of semi-crystalline polymers via micromechanical approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Micro/macro-stress relationship and local stress distribution in polyethylene spherulites upon uniaxial stretching in the small strain domain

Loading next page...
 
/lp/elsevier/micro-macro-stress-relationship-and-local-stress-distribution-in-hOuyr9UGtp
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2018.02.052
Publisher site
See Article on Publisher Site

Abstract

Local stress of polyethylene spherulites under uniaxial stretching in small strain domain has been investigated by in-situ wide angle X-ray diffraction (WAXD) in comparison with macroscopic stress. Particular attention is paid to the elastic strain range. The local stress in equatorial and polar regions both increase in absolute value and follow a linear relation versus macroscopic stress. However, local stress turns out to be heterogeneous over the whole spherulites volume. The polar region shows higher local stress than equatorial region. Moreover, local stress along the a and b crystallographic axes in the crystalline lamellae enable determining the local stress triaxiality which is heterogenous. The increase of crystallinity promotes stress distribution heterogeneity throughout the spherulites. The origin of these phenomenon are discussed in terms of crystalline network percolation and effect of amorphous layer that modifies the local mechanical behavior. The present study provides a useful means for achieving the scale transition between the micro and the macro structural levels that is necessary for the modeling of the mechanical behavior of semi-crystalline polymers via micromechanical approaches.

Journal

PolymerElsevier

Published: Mar 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial