Micro- and Nanoscale Technologies for Delivery into Adherent Cells

Micro- and Nanoscale Technologies for Delivery into Adherent Cells Several recent micro- and nanotechnologies have provided novel methods for biological studies of adherent cells because the small features of these new biotools provide unique capabilities for accessing cells without the need for suspension or lysis. These novel approaches have enabled gentle but effective delivery of molecules into specific adhered target cells, with unprecedented spatial resolution. We review here recent progress in the development of these technologies with an emphasis on in vitro delivery into adherent cells utilizing mechanical penetration or electroporation. We discuss the major advantages and limitations of these approaches and propose possible strategies for improvements. Finally, we discuss the impact of these technologies on biological research concerning cell-specific temporal studies, for example non-destructive sampling and analysis of intracellular molecules. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Trends in Biotechnology Elsevier

Micro- and Nanoscale Technologies for Delivery into Adherent Cells

Loading next page...
 
/lp/elsevier/micro-and-nanoscale-technologies-for-delivery-into-adherent-cells-ejDwlfVcae
Publisher
Elsevier Current Trends
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0167-7799
D.O.I.
10.1016/j.tibtech.2016.05.003
Publisher site
See Article on Publisher Site

Abstract

Several recent micro- and nanotechnologies have provided novel methods for biological studies of adherent cells because the small features of these new biotools provide unique capabilities for accessing cells without the need for suspension or lysis. These novel approaches have enabled gentle but effective delivery of molecules into specific adhered target cells, with unprecedented spatial resolution. We review here recent progress in the development of these technologies with an emphasis on in vitro delivery into adherent cells utilizing mechanical penetration or electroporation. We discuss the major advantages and limitations of these approaches and propose possible strategies for improvements. Finally, we discuss the impact of these technologies on biological research concerning cell-specific temporal studies, for example non-destructive sampling and analysis of intracellular molecules.

Journal

Trends in BiotechnologyElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off