Methamphetamine modulates the production of interleukin-6 and tumor necrosis factor-alpha via the cAMP/PKA/CREB signaling pathway in lipopolysaccharide-activated microglia

Methamphetamine modulates the production of interleukin-6 and tumor necrosis factor-alpha via the... Methamphetamine (METH) elicits neuroinflammatory effects that may implicate its regulatory role on the microglial immune response. However, the mechanism underlying this remains unclear. In the present study, the effects of METH on lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) productions were tested in BV-2 cells and primary microglial cells. Additionally, western blot analysis was used to examine the phosphorylation of mitogenactivated protein kinases (MAPKs). Next, we detected the alterations in cAMP content and the phosphorylation levels of CREB in microglial cells to determine the involvement of the cAMP/CREB signaling pathway. We also used an adenylyl cyclase (AC) agonist (forskolin) and antagonist (MDL-12330A) and a PKA antagonist (H89) to confirm their participation. We observed that METH alone did not affect the production of IL-6 or TNF-α. In contrast, METH augmented the IL-6 production and inhibited the TNF-α production induced by LPS. A similar effect of forskolin was also observed in BV-2 cells. While MAPK activation was not influenced by METH alone, the LPS-induced phosphorylation of p38, JNK and ERK1/2 were all reduced by METH. Both the concentration of cAMP and the phosphorylation of CREB were increased by METH in LPS-activated microglial cells. The effects of METH were altered by MDL-12330A and H89. Moreover, the inhibition of the phosphorylation of ERK1/2 by METH was also reversed. These results suggest that the differential regulation of IL-6 and TNF-α by METH in LPS-activated microglial cells may be attributable to the cAMP/PKA/CREB signaling pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Immunopharmacology Elsevier

Methamphetamine modulates the production of interleukin-6 and tumor necrosis factor-alpha via the cAMP/PKA/CREB signaling pathway in lipopolysaccharide-activated microglia

Loading next page...
 
/lp/elsevier/methamphetamine-modulates-the-production-of-interleukin-6-and-tumor-bHmMYGxncj
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1567-5769
eISSN
1878-1705
D.O.I.
10.1016/j.intimp.2018.01.024
Publisher site
See Article on Publisher Site

Abstract

Methamphetamine (METH) elicits neuroinflammatory effects that may implicate its regulatory role on the microglial immune response. However, the mechanism underlying this remains unclear. In the present study, the effects of METH on lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) productions were tested in BV-2 cells and primary microglial cells. Additionally, western blot analysis was used to examine the phosphorylation of mitogenactivated protein kinases (MAPKs). Next, we detected the alterations in cAMP content and the phosphorylation levels of CREB in microglial cells to determine the involvement of the cAMP/CREB signaling pathway. We also used an adenylyl cyclase (AC) agonist (forskolin) and antagonist (MDL-12330A) and a PKA antagonist (H89) to confirm their participation. We observed that METH alone did not affect the production of IL-6 or TNF-α. In contrast, METH augmented the IL-6 production and inhibited the TNF-α production induced by LPS. A similar effect of forskolin was also observed in BV-2 cells. While MAPK activation was not influenced by METH alone, the LPS-induced phosphorylation of p38, JNK and ERK1/2 were all reduced by METH. Both the concentration of cAMP and the phosphorylation of CREB were increased by METH in LPS-activated microglial cells. The effects of METH were altered by MDL-12330A and H89. Moreover, the inhibition of the phosphorylation of ERK1/2 by METH was also reversed. These results suggest that the differential regulation of IL-6 and TNF-α by METH in LPS-activated microglial cells may be attributable to the cAMP/PKA/CREB signaling pathway.

Journal

International ImmunopharmacologyElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off