Metal clusters: New era of hydrogen production

Metal clusters: New era of hydrogen production Clusters show intermediate properties between the isolated atoms and the bulk metals and represent the most elemental building blocks in nature (after atoms). They are characterized by their size, which establish a bridge between atomic and nanoparticle performances, with properties completely different from these two size regimes. If particle size becomes comparable to the Fermi wavelength of an electron, i.e. <2nm, then this is a cluster. Reducing the size from the bulk material to nanoparticles displays a scaling behavior in physical properties in the later ones, due to the large surface-to-volume portion. Through further size reduction, entering into the subnanometric cluster region, physical properties are largely affected by strong quantum confinement. These quantum size effects (HOMO-LUMO gap), the small size and the specific geometry grants subnanometric clusters with entirely novel properties, including cluster photoluminescence, enhanced catalytic activity, etc. In this literature review, an introduction to the physical properties of clusters is reported; the controlled synthesis methods and the catalytic properties in hydrogen evolution. Hydrogen (H2) production by water splitting is hindered mainly by the lack of low-cost and efficient photocatalysts. Here, we show that sub-nanometric metal clusters can be used as photocatalysts for H2 production in the presence of holes or electrons scavengers by water splitting. This illustrates the considerable potential of very small zerovalent, metallic clusters as novel atomic-level photocatalysts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

Metal clusters: New era of hydrogen production

Loading next page...
 
/lp/elsevier/metal-clusters-new-era-of-hydrogen-production-nU6htafqUB
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.113
Publisher site
See Article on Publisher Site

Abstract

Clusters show intermediate properties between the isolated atoms and the bulk metals and represent the most elemental building blocks in nature (after atoms). They are characterized by their size, which establish a bridge between atomic and nanoparticle performances, with properties completely different from these two size regimes. If particle size becomes comparable to the Fermi wavelength of an electron, i.e. <2nm, then this is a cluster. Reducing the size from the bulk material to nanoparticles displays a scaling behavior in physical properties in the later ones, due to the large surface-to-volume portion. Through further size reduction, entering into the subnanometric cluster region, physical properties are largely affected by strong quantum confinement. These quantum size effects (HOMO-LUMO gap), the small size and the specific geometry grants subnanometric clusters with entirely novel properties, including cluster photoluminescence, enhanced catalytic activity, etc. In this literature review, an introduction to the physical properties of clusters is reported; the controlled synthesis methods and the catalytic properties in hydrogen evolution. Hydrogen (H2) production by water splitting is hindered mainly by the lack of low-cost and efficient photocatalysts. Here, we show that sub-nanometric metal clusters can be used as photocatalysts for H2 production in the presence of holes or electrons scavengers by water splitting. This illustrates the considerable potential of very small zerovalent, metallic clusters as novel atomic-level photocatalysts.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off