Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique

Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique This paper describes a procedure for the solution of problems involving tensile cracking using the so-called smeared crack approach, that is, standard finite elements with continuous displacement fields and a standard local constitutive model with strain-softening. An isotropic Rankine damage model is considered. The softening modulus is adjusted according to the material fracture energy and the element size. The resulting continuum and discrete mechanical problems are analyzed and the question of predicting correctly the direction of crack propagation is deemed as the main difficulty to be overcome in the discrete problem. It is proposed to use a crack tracking technique to attain the desired stability and convergence properties of the corresponding formulation. Numerical examples show that the resulting procedure is well-posed, stable and remarkably robust; the results obtained do not seem to suffer from spurious mesh-size or mesh-bias dependence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computer Methods in Applied Mechanics and Engineering Elsevier

Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique

Loading next page...
 
/lp/elsevier/mesh-objective-tensile-cracking-via-a-local-continuum-damage-model-and-QoJKUhvLk7
Publisher
Elsevier
Copyright
Copyright © 2006 Elsevier B.V.
ISSN
0045-7825
eISSN
1879-2138
D.O.I.
10.1016/j.cma.2006.04.008
Publisher site
See Article on Publisher Site

Abstract

This paper describes a procedure for the solution of problems involving tensile cracking using the so-called smeared crack approach, that is, standard finite elements with continuous displacement fields and a standard local constitutive model with strain-softening. An isotropic Rankine damage model is considered. The softening modulus is adjusted according to the material fracture energy and the element size. The resulting continuum and discrete mechanical problems are analyzed and the question of predicting correctly the direction of crack propagation is deemed as the main difficulty to be overcome in the discrete problem. It is proposed to use a crack tracking technique to attain the desired stability and convergence properties of the corresponding formulation. Numerical examples show that the resulting procedure is well-posed, stable and remarkably robust; the results obtained do not seem to suffer from spurious mesh-size or mesh-bias dependence.

Journal

Computer Methods in Applied Mechanics and EngineeringElsevier

Published: Dec 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off