Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids

Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of... As the demand for medical cannabis preparations increases, so does the use of the common organic solvents that are used in the extraction and quantification of phytocannabinoids. Since common organic solvents are typically hazardous to the environment and to human health, it is vital to identify safer, greener, and more efficient alternatives. The aim of the present research was to develop a series of hydrophobic deep eutectic solvents (DESs) based on terpenes and natural organic acids and to establish whether these might be potential substitutes for the extraction of phytocannabinoids (tetrahydrocannabinol, cannabidiol, and their carboxylated homologues) from raw cannabis plant material.Data were obtained using capillary electrophoresis with diode array detection (DAD). Initial screening showed that the DES composed of a menthol: acetic acid (1:1 M ratio) mixture showed the greatest extraction efficiency (of all the DESs that were tested), with yields ranging from 118.6% to 132.6% (compared to a methanol: chloroform mixture). In conclusion, menthol: acetic acid DES extraction is efficient, as well as non-toxic and biodegradable. As such it has applications within the pharmaceutical industry and represents a greener alternative organic solvent for the extraction of phytocannabinoids. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids

Loading next page...
 
/lp/elsevier/menthol-based-hydrophobic-deep-eutectic-solvents-towards-greener-and-JljibePscv
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.05.080
Publisher site
See Article on Publisher Site

Abstract

As the demand for medical cannabis preparations increases, so does the use of the common organic solvents that are used in the extraction and quantification of phytocannabinoids. Since common organic solvents are typically hazardous to the environment and to human health, it is vital to identify safer, greener, and more efficient alternatives. The aim of the present research was to develop a series of hydrophobic deep eutectic solvents (DESs) based on terpenes and natural organic acids and to establish whether these might be potential substitutes for the extraction of phytocannabinoids (tetrahydrocannabinol, cannabidiol, and their carboxylated homologues) from raw cannabis plant material.Data were obtained using capillary electrophoresis with diode array detection (DAD). Initial screening showed that the DES composed of a menthol: acetic acid (1:1 M ratio) mixture showed the greatest extraction efficiency (of all the DESs that were tested), with yields ranging from 118.6% to 132.6% (compared to a methanol: chloroform mixture). In conclusion, menthol: acetic acid DES extraction is efficient, as well as non-toxic and biodegradable. As such it has applications within the pharmaceutical industry and represents a greener alternative organic solvent for the extraction of phytocannabinoids.

Journal

Journal of Cleaner ProductionElsevier

Published: Aug 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off