Membraneless enzymatic ethanol/O2 fuel cell: Transitioning from an air-breathing Pt-based cathode to a bilirubin oxidase-based biocathode

Membraneless enzymatic ethanol/O2 fuel cell: Transitioning from an air-breathing Pt-based cathode... The bioelectrooxidation of ethanol was investigated in a fully enzymatic membraneless ethanol/O2 biofuel cell assembly using hybrid bioanodes containing multi-walled carbon nanotube (MWCNT)-decorated gold metallic nanoparticles with either a pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) enzyme or a nicotinamide adenine dinucleotide (NAD+)-dependent ADH enzyme. The biofuel cell anode was prepared with the PQQ-dependent enzyme and designed using either a direct electron transfer (DET) architecture or via a mediated electron transfer (MET) configuration through a redox polymer, 1,1′-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI). In the case of the bioanode containing the NAD+-dependent enzyme, only the mediated electron transfer mechanism was employed using an electropolymerized methylene green film to regenerate the NAD+ cofactor. Regardless of the enzyme being employed at the anode, a bilirubin oxidase-based biocathode prepared within a DET architecture afforded efficient electrocatalytic oxygen reduction in an ethanol/O2 biofuel cell. The power curves showed that DET-based bioanodes via the PQQ-dependent ADH still lack high current densities, whereas the MET architecture furnished maximum power density values as high as 226 ± 21 μW cm−2. Considering the complete membraneless enzymatic biofuel cell with the NAD+-dependent ADH-based bioanode, power densities as high as 111 ± 14 μW cm−2 were obtained. This shows the advantage of PQQ-dependent ADH for membraneless ethanol/O2 biofuel cell applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Membraneless enzymatic ethanol/O2 fuel cell: Transitioning from an air-breathing Pt-based cathode to a bilirubin oxidase-based biocathode

Loading next page...
 
/lp/elsevier/membraneless-enzymatic-ethanol-o2-fuel-cell-transitioning-from-an-air-Cz90EIEdZa
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.073
Publisher site
See Article on Publisher Site

Abstract

The bioelectrooxidation of ethanol was investigated in a fully enzymatic membraneless ethanol/O2 biofuel cell assembly using hybrid bioanodes containing multi-walled carbon nanotube (MWCNT)-decorated gold metallic nanoparticles with either a pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) enzyme or a nicotinamide adenine dinucleotide (NAD+)-dependent ADH enzyme. The biofuel cell anode was prepared with the PQQ-dependent enzyme and designed using either a direct electron transfer (DET) architecture or via a mediated electron transfer (MET) configuration through a redox polymer, 1,1′-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI). In the case of the bioanode containing the NAD+-dependent enzyme, only the mediated electron transfer mechanism was employed using an electropolymerized methylene green film to regenerate the NAD+ cofactor. Regardless of the enzyme being employed at the anode, a bilirubin oxidase-based biocathode prepared within a DET architecture afforded efficient electrocatalytic oxygen reduction in an ethanol/O2 biofuel cell. The power curves showed that DET-based bioanodes via the PQQ-dependent ADH still lack high current densities, whereas the MET architecture furnished maximum power density values as high as 226 ± 21 μW cm−2. Considering the complete membraneless enzymatic biofuel cell with the NAD+-dependent ADH-based bioanode, power densities as high as 111 ± 14 μW cm−2 were obtained. This shows the advantage of PQQ-dependent ADH for membraneless ethanol/O2 biofuel cell applications.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off