Meltwater from snow contaminated by oil sands emissions is toxic to larval fish, but not spring river water

Meltwater from snow contaminated by oil sands emissions is toxic to larval fish, but not spring... To assess the toxicity of winter-time atmospheric deposition in the oil sands mining area of Northern Alberta, embryo-larval fathead minnow (Pimephales promelas) were exposed to snowmelt samples. Snow was collected in 2011–2014 near (<7km) oil sands open pit mining operations in the Athabasca River watershed and at sites far from (>25km) oil sands mining. Snow was shipped frozen back to the laboratory, melted, and amended with essential ions prior to testing. Fertilized fathead minnow eggs were exposed (<24h post-fertilization to 7–16days post-hatch) to a range of 25%–100% snowmelt. Snow samples far from (25–277km away) surface mining operations and upgrading facilities did not affect larval fathead minnow survival at 100%. Snow samples from sites near surface mining and refining activities (<7km) showed reduced larval minnow survival. There was some variability in the potencies of snow year-to-year from 2011 to 2014, and there were increases in deformities in minnows exposed to snow from 1 site on the Steepbank River. Although exposure to snowmelt from sites near oil sands surface mining operations caused effects in larval fish, spring melt water from these same sites in late March–May of 2010, 2013 and 2014 showed no effects on larval survival when tested at 100%. Snow was analyzed for metals, total naphthenic acid concentrations, parent PAHs and alkylated PAHs. Naphthenic acid concentrations in snow were below those known to affect fish larvae. Concentrations of metals in ion-amended snow were below published water quality guideline concentrations. Compared to other sites, the snowmelt samples collected close to mining and upgrading activities had higher concentrations of PAHs and alkylated PAHs associated with airborne deposition of fugitive dusts from mining and coke piles, and in aerosols and particles from stack emissions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Meltwater from snow contaminated by oil sands emissions is toxic to larval fish, but not spring river water

Loading next page...
 
/lp/elsevier/meltwater-from-snow-contaminated-by-oil-sands-emissions-is-toxic-to-2j1tn9HnHa
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.284
Publisher site
See Article on Publisher Site

Abstract

To assess the toxicity of winter-time atmospheric deposition in the oil sands mining area of Northern Alberta, embryo-larval fathead minnow (Pimephales promelas) were exposed to snowmelt samples. Snow was collected in 2011–2014 near (<7km) oil sands open pit mining operations in the Athabasca River watershed and at sites far from (>25km) oil sands mining. Snow was shipped frozen back to the laboratory, melted, and amended with essential ions prior to testing. Fertilized fathead minnow eggs were exposed (<24h post-fertilization to 7–16days post-hatch) to a range of 25%–100% snowmelt. Snow samples far from (25–277km away) surface mining operations and upgrading facilities did not affect larval fathead minnow survival at 100%. Snow samples from sites near surface mining and refining activities (<7km) showed reduced larval minnow survival. There was some variability in the potencies of snow year-to-year from 2011 to 2014, and there were increases in deformities in minnows exposed to snow from 1 site on the Steepbank River. Although exposure to snowmelt from sites near oil sands surface mining operations caused effects in larval fish, spring melt water from these same sites in late March–May of 2010, 2013 and 2014 showed no effects on larval survival when tested at 100%. Snow was analyzed for metals, total naphthenic acid concentrations, parent PAHs and alkylated PAHs. Naphthenic acid concentrations in snow were below those known to affect fish larvae. Concentrations of metals in ion-amended snow were below published water quality guideline concentrations. Compared to other sites, the snowmelt samples collected close to mining and upgrading activities had higher concentrations of PAHs and alkylated PAHs associated with airborne deposition of fugitive dusts from mining and coke piles, and in aerosols and particles from stack emissions.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off