Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation

Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation Cognitive health of an organism is considered to be maintained by the capacity of hippocampal precursors to proliferate and differentiate. Environmental stressors including irradiation have been shown to inhibit neurogenesis and are associated with the onset of cognitive impairments. Over the last two decades, much evidence has been gathered showing that enhanced free radical levels and an impaired antioxidant pool are important factors underlying the pathophysiological mechanisms in a variety of neurocognitive and neurodegenerative ailments. Since oxidative stress is reported to be implicated in impaired neurogenesis, it is likely that antioxidants such as melatonin and its metabolites could restore or minimize cellular death in the hippocampal dentate gyrus. The present review summarizes the recent studies documenting the protective role of melatonin against radiation-induced impairment of neurogenesis and cognitive functions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Progress in Neurobiology Elsevier

Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation

Progress in Neurobiology, Volume 90 (1) – Jan 11, 2010

Loading next page...
 
/lp/elsevier/melatonin-maintains-adult-hippocampal-neurogenesis-and-cognitive-jU285P0Lux
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier Ltd
ISSN
0301-0082
D.O.I.
10.1016/j.pneurobio.2009.10.019
Publisher site
See Article on Publisher Site

Abstract

Cognitive health of an organism is considered to be maintained by the capacity of hippocampal precursors to proliferate and differentiate. Environmental stressors including irradiation have been shown to inhibit neurogenesis and are associated with the onset of cognitive impairments. Over the last two decades, much evidence has been gathered showing that enhanced free radical levels and an impaired antioxidant pool are important factors underlying the pathophysiological mechanisms in a variety of neurocognitive and neurodegenerative ailments. Since oxidative stress is reported to be implicated in impaired neurogenesis, it is likely that antioxidants such as melatonin and its metabolites could restore or minimize cellular death in the hippocampal dentate gyrus. The present review summarizes the recent studies documenting the protective role of melatonin against radiation-induced impairment of neurogenesis and cognitive functions.

Journal

Progress in NeurobiologyElsevier

Published: Jan 11, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off