Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver

Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver Impaired canalicular secretion due to increased endocytosis and intracellular retention of canalicular transporters such as BSEP and MRP2 is a main, common pathomechanism of cholestasis. Nevertheless, the mechanisms governing this process are unknown. We characterized this process in estradiol 17 β-d-glucuronide (E17G)-induced cholestasis, an experimental model which partially mimics pregnancy-induced cholestasis. Inhibitors of clathrin-mediated endocytosis (CME) such as monodansylcadaverine (MDC) or K+ depletion, but not the caveolin-mediated endocytosis inhibitors filipin and genistein, prevented E17G-induced endocytosis of BSEP and MRP2, and the associated impairment of activity of these transporters in isolated rat hepatocyte couplets (IRHC). Immunofluorescence and confocal microscopy studies showed that, in E17G-treated IRHC, there was a significant increase in the colocalization of MRP2 with clathrin, AP2, and Rab5, three essential members of the CME machinery. Knockdown of AP2 by siRNA in sandwich-cultured rat hepatocytes completely prevented E17G-induced endocytosis of BSEP and MRP2. MDC significantly prevented this endocytosis, and the impairment of bile flow and biliary secretion of BSEP and MRP2 substrates, in isolated and perfused livers. BSEP and MRP2, which were mostly present in raft (caveolin-enriched) microdomains in control rats, were largely found in non-raft (clathrin-enriched) microdomains in livers from E17G-treated animals, from where they can be readily recruited for CME. In conclusion, our findings show that CME is the mechanism responsible for the internalization of the canalicular transporters BSEP and MRP2 in E17G-induced cholestasis. The shift of these transporters from raft to non-raft microdomains could be a prerequisite for the transporters to be endocytosed under cholestatic conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease Elsevier

Loading next page...
 
/lp/elsevier/mechanisms-of-canalicular-transporter-endocytosis-in-the-cholestatic-OjdqylegYi
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0925-4439
D.O.I.
10.1016/j.bbadis.2018.01.015
Publisher site
See Article on Publisher Site

Abstract

Impaired canalicular secretion due to increased endocytosis and intracellular retention of canalicular transporters such as BSEP and MRP2 is a main, common pathomechanism of cholestasis. Nevertheless, the mechanisms governing this process are unknown. We characterized this process in estradiol 17 β-d-glucuronide (E17G)-induced cholestasis, an experimental model which partially mimics pregnancy-induced cholestasis. Inhibitors of clathrin-mediated endocytosis (CME) such as monodansylcadaverine (MDC) or K+ depletion, but not the caveolin-mediated endocytosis inhibitors filipin and genistein, prevented E17G-induced endocytosis of BSEP and MRP2, and the associated impairment of activity of these transporters in isolated rat hepatocyte couplets (IRHC). Immunofluorescence and confocal microscopy studies showed that, in E17G-treated IRHC, there was a significant increase in the colocalization of MRP2 with clathrin, AP2, and Rab5, three essential members of the CME machinery. Knockdown of AP2 by siRNA in sandwich-cultured rat hepatocytes completely prevented E17G-induced endocytosis of BSEP and MRP2. MDC significantly prevented this endocytosis, and the impairment of bile flow and biliary secretion of BSEP and MRP2 substrates, in isolated and perfused livers. BSEP and MRP2, which were mostly present in raft (caveolin-enriched) microdomains in control rats, were largely found in non-raft (clathrin-enriched) microdomains in livers from E17G-treated animals, from where they can be readily recruited for CME. In conclusion, our findings show that CME is the mechanism responsible for the internalization of the canalicular transporters BSEP and MRP2 in E17G-induced cholestasis. The shift of these transporters from raft to non-raft microdomains could be a prerequisite for the transporters to be endocytosed under cholestatic conditions.

Journal

Biochimica et Biophysica Acta (BBA) - Molecular Basis of DiseaseElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off