Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials

Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials A method to improve the mechanical behavior of 3D-printed elements is presented. 3D-printed elements are orthotropic and weak in their interlayers; thus, FRPs, which are easy-formed, light-weighted and high-strength, are ideal materials to enhance 3D-printed elements. To investigate the reinforcement effect, uniaxial compression tests were conducted on circular column specimens, and four-point flexural tests were conducted on beam specimens. The results indicated that wrapping 3D-printed columns with FRPs changed their failure modes from brittle to ductile, increased the peak loads that they could endure by 1427.2–1792.0% and increased the largest deformations they could achieve by 833.9–1171.3% using different numbers of layers and types of reinforcement. For the 3D-printed beams reinforced with FRPs, the bearing capacities were increased by 179.6–604.5%, and their flexure deflections at their mid-spans were increased by 40.8–225.8%. The failure modes of the 3D-printed beams were affected by numbers of layers and types of reinforcement. Additionally, finite element analyses were conducted to simulate the failure modes of the 3D-printed elements based on the maximum stress criterion. The results showed that the predicted failure locations corresponded with the experimental failure locations observed. According to this study, 3D-printed elements reinforced with FRP sheets showed potential for future development and applications in construction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials

Loading next page...
 
/lp/elsevier/mechanical-behavior-of-frp-sheets-reinforced-3d-elements-printed-with-pd365EqPtm
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2015.08.079
Publisher site
See Article on Publisher Site

Abstract

A method to improve the mechanical behavior of 3D-printed elements is presented. 3D-printed elements are orthotropic and weak in their interlayers; thus, FRPs, which are easy-formed, light-weighted and high-strength, are ideal materials to enhance 3D-printed elements. To investigate the reinforcement effect, uniaxial compression tests were conducted on circular column specimens, and four-point flexural tests were conducted on beam specimens. The results indicated that wrapping 3D-printed columns with FRPs changed their failure modes from brittle to ductile, increased the peak loads that they could endure by 1427.2–1792.0% and increased the largest deformations they could achieve by 833.9–1171.3% using different numbers of layers and types of reinforcement. For the 3D-printed beams reinforced with FRPs, the bearing capacities were increased by 179.6–604.5%, and their flexure deflections at their mid-spans were increased by 40.8–225.8%. The failure modes of the 3D-printed beams were affected by numbers of layers and types of reinforcement. Additionally, finite element analyses were conducted to simulate the failure modes of the 3D-printed elements based on the maximum stress criterion. The results showed that the predicted failure locations corresponded with the experimental failure locations observed. According to this study, 3D-printed elements reinforced with FRP sheets showed potential for future development and applications in construction.

Journal

Composite StructuresElsevier

Published: Dec 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off