Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains

Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in... As one of the most important components in high-speed trains, demands are improved on the mechanical and tribological properties of materials for brake pads. In this study, a newly developed copper metal matrix composite (Cu-MMC) for the aforementioned brake pads was fabricated by powder metallurgy route. The microstructure and mechanical properties of Cu-MMC were investigated. Cu-MMC was tribo-evaluated by a full-scale dynamometer, and special attention was paid on the braking performances during emergency stop-braking at initial speeds from 300 to 380 km/h. Examination and analysis of the worn surface and subsurface corroborated the wear mechanism. The results indicate that Cu-MMC exhibits excellent properties and can meet the technical requirements, so it holds great promise for applications in high-speed trains. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology International Elsevier

Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains

Loading next page...
 
/lp/elsevier/mechanical-and-tribological-behaviors-of-copper-metal-matrix-Gi0YRGF4Py
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0301-679X
eISSN
1879-2464
D.O.I.
10.1016/j.triboint.2017.11.038
Publisher site
See Article on Publisher Site

Abstract

As one of the most important components in high-speed trains, demands are improved on the mechanical and tribological properties of materials for brake pads. In this study, a newly developed copper metal matrix composite (Cu-MMC) for the aforementioned brake pads was fabricated by powder metallurgy route. The microstructure and mechanical properties of Cu-MMC were investigated. Cu-MMC was tribo-evaluated by a full-scale dynamometer, and special attention was paid on the braking performances during emergency stop-braking at initial speeds from 300 to 380 km/h. Examination and analysis of the worn surface and subsurface corroborated the wear mechanism. The results indicate that Cu-MMC exhibits excellent properties and can meet the technical requirements, so it holds great promise for applications in high-speed trains.

Journal

Tribology InternationalElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off