Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia

Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in... Ambient air samples were obtained in Riyadh, the capital and largest city of Saudi Arabia, during two measurement campaigns spanning September 2011 to September 2012. Sixteen particle-phase polycyclic aromatic hydrocarbons (PAH) were quantified in 167 samples. Pyrene and fluoranthene were the most abundant PAH, with average of 3.37 ± 14.01 ng m−3 and 8.00 ± 44.09 ng m−3, respectively. A dominant contribution from low molecular weight (LMW) PAH (MW < 228) suggested a large influence of industrial emissions on PAH concentrations. Monte Carlo source apportionment using diagnostic ratios showed that 80 ± 10% of the average LMW PAH concentrations were contributed by petroleum vapor emissions, while 53 ± 19% of high molecular weight (HMW) PAH were from solid fuel combustion emissions. The positive matrix factorization model estimated that oil combustion emissions dominated total PAH concentrations, accounting for on average 96%, likely due to widespread use of oil fuels in energy production (power plants and industries). Our results demonstrate the significant influence of petroleum product production and consumption on particulate-phase PAH concentrations in Riyadh, but also point to the importance of traffic and solid fuel burning, including coke burning and seasonal biomass burning, especially as they contribute to the ambient levels of HMW PAH. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Atmospheric Environment Elsevier

Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia

Loading next page...
 
/lp/elsevier/measurements-and-source-apportionment-of-particle-associated-fZNwJkqjz5
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
1352-2310
eISSN
1873-2844
D.O.I.
10.1016/j.atmosenv.2016.04.025
Publisher site
See Article on Publisher Site

Abstract

Ambient air samples were obtained in Riyadh, the capital and largest city of Saudi Arabia, during two measurement campaigns spanning September 2011 to September 2012. Sixteen particle-phase polycyclic aromatic hydrocarbons (PAH) were quantified in 167 samples. Pyrene and fluoranthene were the most abundant PAH, with average of 3.37 ± 14.01 ng m−3 and 8.00 ± 44.09 ng m−3, respectively. A dominant contribution from low molecular weight (LMW) PAH (MW < 228) suggested a large influence of industrial emissions on PAH concentrations. Monte Carlo source apportionment using diagnostic ratios showed that 80 ± 10% of the average LMW PAH concentrations were contributed by petroleum vapor emissions, while 53 ± 19% of high molecular weight (HMW) PAH were from solid fuel combustion emissions. The positive matrix factorization model estimated that oil combustion emissions dominated total PAH concentrations, accounting for on average 96%, likely due to widespread use of oil fuels in energy production (power plants and industries). Our results demonstrate the significant influence of petroleum product production and consumption on particulate-phase PAH concentrations in Riyadh, but also point to the importance of traffic and solid fuel burning, including coke burning and seasonal biomass burning, especially as they contribute to the ambient levels of HMW PAH.

Journal

Atmospheric EnvironmentElsevier

Published: Jul 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off